VOL． 3 NO． 21993

沙
 襟研究

JOURNAL OF ARID LAND STUDIES

口 絵
吉 野 正 敏：タクラマカン沙漠南縁の和田•策勒における沙漠化と人間活動
展望論文
平賀義彦•松 本 聰：来世紀をどう生きるか—— 21 世紀の食糧生産と人口問題から考える83－99
原著論文
高橋和也•張 勁•黄 子 蔚•熊 建 民•村山治太•韓 春 雨•増
田彰正•牛木久雄：中国タクラマカン砂漠の陸水，降水の同位体的，化学的特性101－111
池谷和信：商品経済化にともなうソマリのラクダ遊牧と紛争 113－123
吉野正敏•藤田佳久•有薗正一郎•杜 明 遠：タクラマカン沙漠南縁の和田•
策勒におけるウィグル族農民の農業生産活動 125－135
小特集：つくばシンポジウム袴田共之：特集：つくば発，沙漠へ「つくばシンポジゥム」に寄せて$\cdot 137$
山川修治：つくばにおける沙漠•沙漠化研究の動向 138－142
杜 明 遠：中国の沙漠の気候と生活 143－147
根 本 正之：植生からみた中国における沙漠化の現状 149－156
小特集：第 3 回沙漠工学講演会
概 要 157
I．安 部 征 雄：「日本でなせ沙漠か」と沙漠工学の役割 158－162
II．井 伊 博行：地下水脈の水の流れ 163－168
III．加 藤 茂：耐塩性•耐旱性植物による沙漠緑化への挑戦－ 169－175
IV．牛 山 泉：沙漠の風力エネルギーと風車 177－181
V．総合討論 182－183
沙漠シリーズ（2）
岡 秀 一：南太平洋岸沙漠の気候的特徴——ペルーアタカマ沙漠の知見から‥185－191
書 評 193－194

タクラマカン沙漠南縁の和田•策勒における沙漠化と人間活動

Desertification and Human Activities at Hotan and Qira on the Southern Part of Taklimakan Desert

写真 1．速いスピードでオアシスへ進行する大砂丘．（策勒県策勒西端にて．1993年9月1日，杜撮影） Photo 1．Big sand dunes invading to the oasis with high velocity．（Taken at the western edge of Qira by Du on Sept．1，1993）

写真 2．冬の飼料を用意するため，草（駱駄刺）を刈って沙漠から帰る人。（和田県にて．1993年8月31日，杜撮影）
Photo 2．An Uygur farmer coming back from the desert，carring breeding grass，Alhagi pseudalhagi，for winter．（Taken at the northern part of Hotan by Du on Aug．31，1993）

写真 3．オアシスと沙漠の限界地での放牧．羊は駱駄刺（Alhagi pseudalhagi）を好む。（策勒県にて．1993 年 9月1日，杜撮影）
Photo 3．Grazing on the border of the oasis．Sheep likes to eat the grass，Alhagi pseudalhagi（Taken by Du at Qira on Sept．1，1993）

写真 4．沙漠から集めてきた薪．一部は売る。（策勒県策勒郷にて，1993年9月2日，吉野撮影）
Photo 4．Woods for fuel collected from the desert． Some of them are sold at the market．（Taken at Qira by Yoshino on Sept．2，1993）

写真 5．オアシスの中の灌溉水路．（策勒県巴希吾之買に て．1993年9月3日，吉野撮影）
Photo 5．Irrigation canal in the oasis at Qira．（Taken by Yoshino on Sept．3，1993）

写真6．オアシス最前線の家．策勒県策勒郷治沙站の農家入口。壁材はタマリックス。（1993年9月1日，吉野撮影）
Photo 6．Entrance of a farmer＇s house on the front of oasis of Qira．Wall is made of Tamarix． （Taken by Yoshino on Sept．3，1993）

写真 7．中学校教員の家の庭にある溜池．生活用水のため．（策勒県巴希吾之買にて。1993年9月3日，吉野撮影）
Photo 7．Pond for living water at a corner of garden of a teacher＇s house at Qira． （Taken by Yoshino on Sept． 3 ，1993）

写真 8．写真 6 と同じ家の家音小屋の部分．壁はタマリックス．屋根 は麦ワラ．背後はポプラの防護林。（1993年9月1日，吉野撮影）
Photo 8．Roof of the part for live－ stocks of the farmer＇s house shown in Photo． 6. Wall made by Tamarix， roof by wheat straw and shelter belt of popular on the back are shown．（Taken by Yoshino on Sept．1， 1993）
（吉野正敏，Masatoshi Yoshino）

来世紀をどう生きるか
 ——21世紀の食糧生産と人口問題から考える——

平賀義彦＊•松本 聰＊＊

1．はじめに

近年，地球環境問題がクローズアップされるように なってから，様々な調査研究報告が発表されている。地球の温暖化，オソン㞓の破壊，土壌や水質の汚染，動植物種の減少などの環境破壊が異常な速さで進んでいる， ということは今日噰もか知っていることである。 しか し，このまま環境破壊を放置しておくと例えば 20 年後 にどのような社会現象か起こることになるのか，果たし て人類はその䍗境破壊を克服することができるのか，と いうことになると，どの報告褚も具体的なイメージを提供してはいない。

地球の沙漠化問題も同様であって，毎年 600 万へク タールの勢いで沙漠化が進行中であるといわれている が，それがどれほどの影響を我々に与えるものなのか把握しにくい。600万ヘクタールという面積は，通常九州 と四国を合わせた面櫝と例えられるが，同時に日本の農地面糔 500 万ヘクタールを上回る面䅡でもある。日本の農地が1年で沙漠化するということはどのように理解 すれば良いのだろうか，ただ大変な勢いだといっている だけでなく，農業生産にどれくらいの影響が出ており， それに対してどのような手段を嘴じなければならない か，どこかで考えられているのだろうか．

沙漠化の原因について解説した餈料は多いが，その影響に関する資料は少なく，ある限定された地域について の報告であったり，特に沙漠化とは関連付けない農業生産動向であったりする．沙漠化問題を農業生産と関連付 けて理解するための資料としてまとめたのが本稿であ る。

本稿は農学というものか総体的な実学であることに照 らし，乾燥地の带業開発に售わるものにとっての基本的 な理解のために，農業土木技術者として取り組んだ もの である．

2．食鋉生痤の現状と人口増加予則

1）地球規模の食程問題の構図

まず，沙漠化の進行はどのような問題なのか整理して おこう。

国連人口計画局が長期人口予測を発表している。それ によると，シナリオによって程度の差はあるにしても全 てのシナリオで急激な人口增加を予測している。

また，国連食粭㖘業機関（FAO）の発表している農業生産年報によると，農地面稹も農業生産指数も伸びてい る．その一方で，国連䍗境計画（UNEP）と国際土墥評価情報センター（ISRIC）によってまとめられた世界土壊劣化評価（GLASOD）では世界的な広がりで土墥が劣化し，土地の生産性が先われつつある。

增え続ける人口を妾うためには，食鋉も增産しなけれ ばならないが，沙漠化が進行することによって，農地が生産力を失ってしまえば，食徙增産という目的が達成で きなくなってしまう，つまり，沙漠化という問題は，土淁劣化の一部であって人口增加と食鋉生産のバランスを崩し，将来の食鋉不足を引き起こす要因と考えられる。

これらの人口と食粗のバランスを検討するために必要 な要素を簡単なモデルに表わしてみると図1 のように なる。

食糧消費は，消蛽する人口と一人当たりの消费性の梖 で表わせる。

この中で，人口は公式にデータが発表されており，盆困や低い教育水準，医療技術の進歩を背景に急激な增加 を示している。次の消費性については，特にデータは公表されていないが，一般には生活水準の向上に伴って増加するものと考えられている。

一方の農業生産は，農地面程と土地生産性の䅡で表わ せる．いま環境問題として取り上げられている土壌劣化 は土地生産性の一つの要菜であるか，ここでは技術改良 によって生産性を向上させる要案と対比させ，農業生産 を制限する要素として扱うことにする。

農業生崀を表わす式の中で，農地面䖽は公表されてい

[^0]

図 1．食粞問題の構図。

図 2．人口と興菐生産．

るデータがあり，少しずつ拡大していることを示してい る．ただ，面㮐だけで判断できないのは，都市，工業，道路や鉄道によって，本来農業に適した土地が農業以外 の分野に使用されていることである。更に，沙漠化を含 む土壤劣化によって，叟業生産の環境か破壊されつつあ 3．第3項の技術改良による土地生産性は公表データは示されていないか，上昇傾向にあることは疑いない。し たかって，この推移Aと推移 B を比較することによっ て将来の食料不足を想定してみる。

FAO の涱業生産年報に，推移 B の左辺に当たる農業生産が指数の形で発表されている。一方の食粗消費を押 し上げる基本的な要素は，急激に進んでいる人口の増加 であり，消费性の伸びという要䒺は従属的なものと考え ることにして，とりあえず人口增加を食梠生産と対比さ せることにする．人口予測は，国連人口計画局が発表し た 2025 年に世界の人口が約 85 億人になるという资料 に基づいている．これを 1980 年の人口を 100 とした指数で表わすことによって，1980年の食糈の需給バラン スを1と考えた場合の現在または将来の需給バランス

かどの程度過剰または不足しているか，絶対皿ではない方法で理解することができる。

このような考え方で上記のモデルをグラフに表わすと図2のようなものになる。
＜農業生産指数〉には，各国原産の全ての農作物およ び畜産物が含まれている。この農業生産指数は，一国の署業部門の可処分生産用（飼料•種子用を除いた後の用）を1979～1981年を基準として示している。まず当該期間における，ある商品の平均可処分生産些を重呈ま たは体積で求める．この数に1979～1981年のその商品 1 単位の平均全国生産者価格を掛ける。この積が，その期間の当該商品の価値総額を 1979～1981年を基準に して表わしたものとなる。全ての農産物および畜産物の価値を合計すると，殿業生産の価値の総計が 1979～ 1981 年の価格で示される（FAO，1992）．

2）畏期人口予測

図2のグラフに描かれた曲線の背暻について少し考 えてみよう。

表1．世界の人口予測。

（世界資䃄研究所，国連璟境計画•国連開発計画協力，1992）

図3．世界の人口予測，1990～2150年．

まず，人口指数であるか，国連の長期人口予測では，最終的な世界人口を推定するためには，出生率が重要な要因であると考えている。男女それぞれの平均寿命を男 は82．5歳，女は87．5歳とした上で，出生率が人口維持水準である 2.06 人に最終的に落ち着くと仮定している。 これを中レベルのシナリオ（2025年に人口約85億人） とし，その上下に高レベルから低レベルまでいくつかの シナリオを設定している，それぞれのシナリオにおける出生率と推定人口は表1 および図3 の通りである。

3）一人当たりの消费性橲向

次に，図1における食粗消費を表わす式の第 2 項「消顕性」が生活水準の向上に伴ってどの程度上昇するか検討してみょう。

これは，各国の国民一人当たりの国民総生産を生活水準を表わす指標と考え，一人1日当たりのカロリー供給畳を食糧消費レベルを表わす指標と考えることによって その関係をグラフに表わすことができる。

世銀が様々な統計餈料を発表する際に引用している低所得国 16 力国，中所得国 25 力国，高所得国 23 力国を表2に示す。

これらの国について，GNP と食椇供給量の関係をグ ラフ上にプロットし，低所得国，中所得国，高所得国そ れぞれの区分の中で回帰線を描いた結果を図 4 に示す。

高所得国では，十分な食鋉供給が確保され所得も高い ので，必要なだけの食鋉を購入することができる。しか し，低所得国は縤買力が不足して食粗消費も低いレベル である．所得が 5,000 ドルを超すあたりから食柽需要は伸びない傾向が見られるが，中所得国や低所得国でも中国やインドネシアなど工業力もあって人口が多い地域で は，所得の伸びに応じて食粗需要も伸び，食鋉の需給バ ランスに少なからず影響を与えることが予想される。

一人当たりの食粗需要（消費性）は，単に生活水準の向上によるものではなく，戦争などによって引き起こさ れている栄䬸不良状態を改善することなどによっても上昇すると思われる。しかし，これらの要因を評価する適当な方法が今回の作業の中では見つかっておらず，消蜆性を上昇させる要因が残されていることだけを記してお くことにする。

4）良地の拡大

次に，農業生産の推移を構成している要因についてそ の背景を検討してみよう。
農地面䖽の変化はFAO の資料に世界の土地利用とし て示されている。
＜耕地〉：一時的あるいは佰常的に作物を作っている土地，一時的な牧草地，市場用および家庭用の菜園，
一時的な休耕地を含む。
＜永年作物〉：ココア，コーヒー，ゴム，果樹，プド ウのように，収秴ののち再び植え付けをする必要のな い作物のこと。

表2．統計分析に使用した代表国（世銀ほか）

低所得国	一人当 GNP		食柽供給且
	1989	1991	1988－90
	（US\＄）	（US\＄）	（cal／ $\left.\mathrm{h}^{*} \mathrm{~d}\right)$
バングラデシュ	180	220	2，037
エチオピア	120	120	1，667
ミャンマー	－	less 500	2，454
アフガニスタン	－	less 500	
ザイール	260	－	2，130
ゥカンタ	250	160	2，178
インド	350	330	2，229
中国	360	370	2，641
スリランカ	430	500	2，246
パキスタン	370	400	2，280
モザンビーク	80	70	1，805
ヶニア	380	340	2，064
リベリア	450		2，259
インドネシア	490	610	2，605
ナイジェリア	250	290	2，200
エジナナ	630	620	3，310
以上16 力国			
中所得国			
ボリビア	600	650	2，013
タイ	1，170	1，580	2，280
フィリビン	700	740	2，341
コロンビア	1，190	1，280	2，453
トルコ	1，360	1，820	3，196
ヨルタン	1，730	1，120	2，634
绵国	4400	6，340	2，826
イラン	1，800	2，320	3，181
イラク	1，940	1，500－3，499	2,887
マレーシア	2，130	2，490	2，671
アルジェリア	2，170	2，020	2，944
フラジル	2，550	2，920	2，730
メキシコ	1，990	2，870	3，062
ホルトカル	4，260	5，620	3，342
アルゼンチン	2，160	2，780	3，068
チリ	1，770	2，160	2，484
南アフリカ	2，460	－	3，133

＜永年草地＞： 5 年以上飼草のために使われている土地である。このカテコリーの調査は難しい。なせなら， これには放牧のための原生地も含まれるし，永年草地 のデータを定期的に報告している国はほとんどないか らである．
＜森林地帯＞：自然林と人工林ならびに伐採されてい
るか近い将来植林される土地をさす。
くその他の土地＞：末耕作の土地，放牧に使われてい

表2．（続き）

中所得国	一人当 GNP		食相供給豆
	1989	1991	1988－90
	（US\＄）	（US\＄）	（cal／ $\left.\mathrm{h}^{*} \mathrm{~d}\right)$
ユーゴスラビア	2，490	－	3，545
ベネスエラ	2，450	2，610	2，443
ギリシャ	5，340	6，230	3，775
ハンカリー	2，560	2，690	3，608
ルーマニア	3，445	1，340	3，081
ホーランド	1，760	1，830	3，426
リビア	5.410	0－5，999	3，293
サウジアラビア	6，230	－	2,929

以上 25 力国

高所得国			
香港		13,200	2,860
イスラエル	9,750	11,330	3,220
シンガホール	10,450	12,890	3,121
クウェート	16,380	more 6,000	3,043
アイルランド	8,500	10,780	3,952
スペイン	9,150	12,460	3,472
イタリア	15,150	18,580	3,498
ニューシーラント	11,800	12,140	3,461
英国	14,570	16,750	3,270
日本	23,730	26,920	2,921
オーストリア	17,360	20,380	3,486
フィンランド	22,060	24,400	3,066
オーストラリア	14,440	16,590	3,302
カナタ	19,020	21,260	3,242
オランタ	19,010	18,560	3,078
ベルギー	16,390	19,300	3,925
フランス	17,830	20,600	3,593
相	21,100	22,560	3,642
デンマーク	20,510	23,660	3,639
旧西ドイッ	20,750	23,650	3,472
ノルウェー	21,850	24,160	3,221
スウェーデン	21,710	25,490	2,978
スイス	30,270	33,510	3,508
	以上 23 カ国		

ない草地，なんらかの建造物が建てられている土地，湿地，廃棄場，道路用地をさす（FAO，1992）
耕地面積は磪加に増加しているが，15年間にわずか 3.3% の伸びしか示しておらず，更に，後述する土壊劣化を含めて考鿬すると，実質的な耕地面秥はむしろ減少 していることになる。この期間の年平均人口変動率が＋ $1.73 \sim 1.74 \%$ ，つまり 15 年間で約 30% の増加であるこ とと比べてみると，一人当たりの耕地面䖽は確実に減少

図 4．GNP と食粉供給用

表3．世界の土地利用．（単位： 1 万 km^{2} ）

年度	土地面稓	耕地面程		（萄䇒展地）	永年作物		永年草地		森，林			その他	
1975	13，076	＝	1，307	（189）	＋	87	＋	3，310	＋	4，1	168	＋	4.204
1980	13，079	＝	1，326	（211）	＋	91	＋	3，333	$+$	4，1	100	＋	4，229
1985	13，079	＝	1，340	（225）	＋	92		3，366		4，0	060	$+$	4，221
1990	13，079	＝	1，350	（237）	＋	94	$+$	3，402	＋	4，0	028	$+$	4，205
			增 加	增 加	增	加		增加			少		少傾向

（FAO， 1991 ほか）

していることになる．このことから，耕地面積の拡大は農業生産の伸びに関してあまり寄与していないことがわ かる。

5） $1970 ~ 1980$ 年代における食程増産傾向

このように耕地面積がわずかしか增加していない（実質的には減少）にもかかわらず，1970～1980年代にお いては，人口指数の伸びを上回る勢いで農業生産指数が伸びている。これは，農地拡大ではなく単位面㮐当たり の収园增加によって達せられてきた，といわれている。 このことは後で確かめることにするが，その理由として灌溉面積の增加，化学肥料使用咼の增加，高収皿品種の開発導入などが相乗的に効果を発揮したからと考えられ ている。

6） 1990 年代に入って食椣増産が減速した要因

しかし，前述の世界土膟劣化評価によって，1945年以降 1.200 万平方キロの土地が劣化していることが判明した。雨や風によって表土が漫食されたり，土地の良

分が失われ，機械力や畜力によって土地が踏み固めら れ，更に化学物質による土墥や水質の汚染が広がってい る．中にはその土地が元々もっていた生物学的機能の全 てを失ってしまうほどの深刻な被害を受けている土地が 300 万平方キロあるという。この数値は，年間約 600 万 ヘクタールの勢いで進行している沙漠化と一致する。

UNEP では，GLASOD の土埧劣化調查を人口や気候学，植生の消失に関するデータと組み合わせ，世界沙漠化地図を作成する計画をもっている。沙漠化には，土壤劣化とそれに関連する乾燥地および半乾燥地域の植生変化が含まれることになる（世界資䃄研究所，国連環境計画•国連開発計画協力，1992）。

土地の生産性低下を補って農業生産を增加させるため には，今まで以上に化学肥料や灌溉をはじめとする機械力などのエネルギー投入を增やさなければならない。し かし現実には，带産物の価格低迷などによって経済性が下がり，灌溉面積の拡大や化学肥料の投入など必要な投資に対する農民の意欲が失われている。また，化学物質 は鹿民自身をはじめ周辺に及ぼす悪影䟧か䱰念されてい

図 5．実質 GNP 年平均変化率．

る．さらに，元をただせば，急激な工業化や泗溉農地の不適切な水管理など環境を無視した人間の行為によっ て，農業生産の環境悪化が引き起こされてきたといえる のであって，今までと同じ方法で増産を図ることには問題がある。

7）GNP 成長の低迷

今までは収皿拡大に寄与してきた灌溉その他の機械力 や化学肥料であるが，今後も同じようにこれらのエネル キーを投入していくだけの力はあるのだろうか，世界の GNP 変化率を前述の 64 力国について調べた結果を図 5 に示す。
GNP 変化率は対象国全体で 70 年代の 5% から， 80年代の 3% ，更にこれをわずか 2 年スライドさせた 10年間では 2% へと急激に落ち込んでいる。これは高所得国の景気低迷か源因であるが，低成長の中でも，高所得国は他に比べて変化が少なく，安定した力を示してい る．しかし中所得国では，低成長化の傾向がはっきり出 ているし，低所得国はその不安定さを表わしている。こ の図から，70年代には，農業の近代化に必要なエネル ギーを投入する余力があったが，80年代以降その余力 というものが失われつつあることが読み取れるのではな いだろうか，このことは，農業生産指数の伸びが減速傾向を示す変曲点とも符合している。今後，収用拡大に加 えて棵境改善も同時に進めなければならない時期を迎え て，それを成し遂げる力が残されているのかどうか，基本的なところにも問題があると思われる。したがって今後は，投入資材や投入エネルギーを節減する罱業生産と いうものが基本的な検討課題になるだろう。

8）土液少化の影管

続いて，土缞劣化地域を図 6 に示す。この問題を少し詳しく検討してみよう。

土壤少化の原因として，自然的要因と人為的な要因の二つか考えられる。自然的要因としては，その地域の気候が乾燥に向かっているというようなことや降雨による土壤浸食，強風による土㳖浸食などがあげられる。一方 の人為的要因には，耕作地を作るためや薪炭材を収集す るために森林が伐採されて土地の被澓が少なくなるこ と，過放牧によって更に裸地化が進むこと，過耕作に よって地力が低下することなどがあげられる。例えば，人口增加に伴って薪炭材の収集题か增え，また耕作面栍 を増やすために森林の伐採が広がる。更に乾燥化する気候に追われるように遊牧民が粗林化した土地に家畜を連 れ込む，このようにして土地の耐候性が低くなってくる と，風，砂，降雨による浸食によって土地の生産力が失 われる，という土塆劣化のシナリオが考えられる。何が最初のきっかけになるのかハッキリしていないが，この ような様々な要因が相互に影響しあって土坮劣化が起こ ると推定されている。
土培劣化の進み方も地域によって異なっている。先ほ どの土壤劣化地図でいくつかの地域を拾ってみると，例 えば重要な興業生産地帯であるアメリカのグレートプ レーンス，旧ソ連のウクライナ地方，中国の媇倉地帯な どで深刻な土墴劣化が起こっている。例えばアメリカで は，機械化㴛溉技術が進んだことによって安定的に収櫒量を增加させてきたが，地下水の取水用が増えすぎたた めに地下水位の低下か問題になっている。また，大規模農場では大型の機械を効率よく使用するために農地の区画を大きくし，防風林が取り払われたために風食の被害

図6．世界の土烄劣化地域．

を受けやすい形状になっている。またこの地域は半乾燥気候に属し，不安定な降水㢄と蒸発县が大きいことが特徴とされている。したがって，この地域の長地が受ける被害は風食だけではなく，降雨による浸食や塩害による土境の荒廃も含まれる。
旧ソ連では，アラル海周辺の問題が大きく取り上げら れている。不適切な水管理によって，アラル海の縮小や大規模な塩害，さらには周辺住民の健康被害が起こって いるとされているか，土㙵劣化地図では，このアラル海 の北側に広がる旧ソ連の媇倉地帯で深刻な劣化が起こっ ていることが示されている。この地域も半乾燥地帯にお ける大規模䩨場ということでアメリカの例と類似してい ることが予想される。

中国では，黄河中流域に黄土と呼ばれる砂が数十～数百メートルも厚く堆栍した地域がある。この黄土高原で は降雨による浸食が進み，耕地の減少だけでなく下流域 の洪水などの原因にもなっている，これも，人口増加に伴う過耕作や過放牧か要因といわれている。また，サハ ラ沙漠南縁に広がるサヘル地域は沙漠化問題でよく取り上げられるところであるか，ここも深刻な劣化が起こっ ていることが示されている。
一方で，例えばボルネオ島の土壌劣化は森林の伐採を表わしており，それか輸出用木材の林業伐採であった り，焼畑を行なうための伐採であったりする。林道や生産力が低下した焼畑農地は裸地化しており，降雨による浸食をまともに受ける。同じような森林の減少に関する

劣化は，インドシナ南部や中国南部およびブラジルで見受けられる。

世界土壌劣化評価（GLASOD）では，過去 45 年にわた る土壌劣化の様子を劣化面積，土壤劣化の程度，土竣劣化の原因などに分類して示している。これらのデータを元に，実質的な農地面秒を数値で評価できれば，これと農業生産によって単位面䅐当たりの収盎評価ができるは ずである。

単位面栍当たりの収是＝農業生産／実質農地面敉
単位面積当たり収㝵（土地生産性）を評価するために作成したものが表 4 であり， 1988 年の状態と年変化を示している。
表4の上段，土地面稘から未開発地までの項目は FAO の農業生産年報（FAO，1992）より 1978～1988年 までの10年間の土地利用データを引用した。続く非劣化面樻から劣化程度•極度までの項目は世界土㜔劣化評価（GLASOD）から，人的要因による土㜔劣化，1945～ 1980年代後半などのデータを引用した。土壤劣化に関 する項目は次のように定誐されている。
＜恒久的農地および安定地域＞：恒久的農業下で劣化 していない土地と植林やテラス化，ガリー化防止対策，その他の保全法を通じて安定している土地から構成される。
＜自然地域＞：人間の活動がほとんどない土地で，低温，急斜面，水捌けの悪さ，低劣な土壤といった理由， あるいは遠隔地であるという理由のために罢業に適さ

表 4．生産予测（全世界）（面程単位： 1 万 km^{2} ）

	年代 1988	年変化
土地面積 耕地～他迄（南極外）	13，128．8	0
耕地面積	1，477．9	3.18
恒常牧草地	3，322．9	
森林地帯	4，095．3	－7．37
その他土地	4，232．7	4.19
放牧外草地	2，659．2	
草地以外	1，573．5	
未開発地	3，486．1	
非劣化面稅恒久的農地安定的地域	6，092．0	
自然地域	3，486．0	
非植生地	1，469．0	
劣化全面䖽	1，964．4	43.65
原因別 植生除去 森林減	579.0	12.87
乱獲 森林減	133.0	2.96
過放牧 森50耕50	679.0	15.09
農業活動 耕地劣化	552.0	12.27
工業産業 土懐污染	23.0	0.51
劣化程度軽度 生産性 85\％	749.0	16.64
中程度 生産性 50\％	910.5	20.23
強度 生産性 15\％	295.7	6.57
極度 生産性 0\％	9.3	0.21
劣化農地面実面秠	914.5	20.32
劣化農地面補正値	529.0	
非劣化農地	3，886．3	
農地面程 補正値	4.415 .3	
地力指数	91.97	
単収向上指数	132.65	2.81
農業生産指数	122.00	

（FAO， 1992 などにより作成）
ない土地を意味する。
＜非植生地〉：活性の砂丘，岩石露出地帯，沙漠，水原，乾地性山岳地帯からなる。
＜植生除去〉：農業開拓，伐採，開発により植物で覆 われていた部分か取り除かれることを意味する。
 の被翟が減少することを意味する。
＜過放牧＞：植物による被蕧を減少させ，土釟の硬盤化につながる。
＜農業活動＞：堆肥や肥料のやりすきもしくは不足，
適当な浸食防止措置を講じないで傾斜地や乾燥した土

さを欠いている土地で重い機械を使うことなどが含ま れる。
＜工業活動と産業活動〉：たとえば医重物の排出，農

薬や肥料の乱用などにより，土埧が汚染物質で汚染さ れることを意味する。
〈轾度劣化〉：带業生産性かか僅かだけ低下しており，生物機能はほとんど本来の状㑷に保たれ，土地利用の方法を変えれば土境を完全に回復できる土地で起きて いる。
＜中程度劣化〉：一帯で農業を続けることは可能であ るか，その生産性は大蝠に落ちる。生物機能は部分的 に破壊されているだけである。土地利用法の大幅な変更によって回復可能である。
＜強度劣化〉：地方的な土地利用管理では農地として の利用かもはやできず，生物機能はほとんど破壊され てしまっている，回復は可能だか，高いコストを伴う。 ＜極度劣化〉：一帯は農地に適さなくなっている。回復は不能で，生物機能も完全に破壊されている（世界資源研究所，国連嫄境計画•国連開発計画協力， 1992）．
上記の定義をもとに，過放牧による土墥劣化の 50% と農業活動による劣化を農地劣化面積として扱うことに する．農地劣化面秥における劣化程度の割合は土埌劣化全体と同じプロボーションと仮定し，それぞれの程度に おける生産性を軽度劣化 85% ，中程度 50% ，强度 15% ，極度 0% として評価する。このようにして，農地劣化面程に作物生産性の重み付けを行なって 100% の生産性をもつ土地の面稹に置き換えたものを「劣化票地面積補正値」と呼ぶことにする。土地利用区分の中の耕地面䅡と恒常牧草地の面積の和から噥地劣化面楀を差し引いたものを非劣化農地とする。劣化農地面程補正値と非劣化餵地の合計を農地面程補正値とし，これが実際の農地面積に対して何バーセントに当たるかを計算したも のを「地力指数」と呼ぶことにする。
農地の劣化か進めば進むほどこの地力指数は小さい値 となる。この地力指数の减少を補うものとして単位面積当たりの収是增加からあると考えられるので，農業生産指数を地力指数で除した商で表わしたものを「単収向上指数」と名付けることにする。この単収向上指数は，農業基盤の整借や栽培技術，品種改良などの技術力の進歩を総合的に表わすものと考えられる。

単収向上指数＝農業生産指数／地力指数

以上の計算を 1978～1988年までのそれぞれについ て行なうことによって，単収向上指数がどのように変化 してきたか調べることにした，その結果，単収向上指数 は年平均 2.81 ポイント上昇していることになった。

図 7．人口と㟶業生産（ケース1）。
表 5．地域別地力指数，単収向上指数，農業生産指数

地 域	88 年の地力指数	単収向上指数	長業生産指数
世 界	91． 97	132． 65	122
北•中央アメリカ	91． 14	113． 01	103
南アメリカ	93． 90	132． 05	124
アフリカ	89． 42	138． 67	124
オセアニア	98． 17	115． 10	113

3．将来予測

1）楽観的シナリオによる将来予測（違成率 105\％）と必要条件
将来予測の最初のヶースとして，過去 10 年間の土地利用の変化，土壤劣化の進行，単収向上指数が今後も変 わらない，というシナリオを想定してみよう。

将来予測を行なう場合は，設定された条件のもとでま ず地力指数と単収向上指数の計算を行なう。この二つの指数から農業生産指数を計算することにする。

農業生産指数 $=$ 地力指数 \times 単収向上指数
こうして計算された蹗業生産指数を前述の人口と食鋉生産のグラフに書き加えて，将来の食粗事情が1980年 のレベルに比べてどのょうに変化していくのか検討す る。

このケースでは，2025年の農業生産指数は203とな り，人口指数が 191 であるので，達成率 106% となる。 しかし，このシナリオが達成されるためには，土壤劣化 か今までと同じような速さで，しかも軽度から極度に至 るプロポーションも変わらない状態で進行し，この農業

生産を阻害する要因に勝る勢いで灌溉や化学肥料の投入 および高収量品種の㧳入を進めなければならない。これ は，前述の現状分析の中で検討したように，投入力の面 でも珧境保全の立場からも多くの問題を含んでいる。

また，この予測は過去 10 年間の食柽生産の平均的な增加を延長したことと同じであり，最近の食粗増産の減速は一時的なものと考えたことになる。更に，土壤劣化 や化学肥料による水質の汚染などもそのまま継続させる ことを容認することにもなる。
つまり，このシナリオはかなり楽観的または非現実的 なものと考えられる．

2）現実的シナリオによる将来予測（量成率 70\％）と前提条件

带業生産指数や土墥劣化評価は地城別に数値が示され ている．地域毎の数値を比べてみると表5 のようにな る．

農業生産指数は，ヨーロッパ，アジア，旧ソ連の三っ の地域をそれぞれ区分して表わしているが，一方の世界土壤劣化評価では，旧ソ連がゥラル山脈を境に東はアジ ア，西はヨーロッパに含められている。本来，人口と食

図8．北中米の単収向上指数．

鋉供給のバランスは，それぞれ特徴ある地域別に行なっ た分析の合計として，世界の将来予測とするべきであ り，その意味ではヨーロッパ，アジア，旧ソ連の三つの地域の地力指数や単収向上指数を検討してみたかった か，本論では限られた資料に基づいているために世界を ひとつの物差しで評価してしまっている。

上記の表の中で，世界の三大食徙生産国の一つである アメリカを含む北中米のデータに注目してみたい。土壤劣化地図（図6）を見ると比皎的土烄劣化が進んでいる地域であるか，数値的（表5）にはアフリカほど劣化が進んでいるわけではない。しかし，带業生産指数は表中 の四つの地域の中で最も伸び悩んでいることを示してい る．これは，北中米が灌溉や化学肥料，高収径品種の準入など，買業の近代化に早くから取り組んできた結果，既存技術の範囲では行き着くところまで来てしまったも のと考えられる．FAO の㚕業生産年報によると，旧ソ連 の農業生産指数が 119，ヨーロッパも 109 と北中米と同様に世界平均を下回っており，中ソ共にアメリカ以上に深刻な土壤劣化問題を抱えているといわれている。これ からの世界の農業に与える影響の大きさと共に，北中米 のデータがその他の地域の将来の姿を一歩先んじて示し ていると考えられるので，ケース2ではこの地域の単収向上指数を参考にする。

世界土壤劣化評価の報告書は，中程度に劣化した 910万平方キロの土地の回復がすぐにであ図られない場合，「少なくともその一部は，近い将来更に重度の少化レペ ルに陥る恐れがある」と結論付けている。中程度に劣化 した農地の生産性低下は，施肥凬を増やすことである程度補うことができる。しかしなから化学物質の使用且を増やすだけでは劣化のプロセスを逆転させることはでき

ないだろうし，地表水や地下水の汚染といった環境への深刻な影響を引き起こすことになる（世界資獂研究所，国連環境計画•国連開発計画協力，1992）。

したかって，先程よりは現実的な予測をするために ケース 2 では次のようなシナリオを設定する。
（シナリオ2）
（1）土地利用は過去と同じペースで推移する。
（2）土壤劣化面積は過去と同じペースで推移するが， 5年ことに 10% ずつ軽度劣化は中程度に，同様 に強度，極度へと劣化の程度が加速される。
（3）単収向上指数は［北中米］並みのペース（年に 0.7 ポイント）でしか伸びない。
このケースでは，2025年の農業生産指数は131 とな り，人口指数か 191 であるので，達成率 69% となる。 これは，1980年当時の状厽に比べて，世界中の人々か約 $2 / 3$ の食鋉で生活しなければならない，または約 $2 / 3$ の人だけが 1980 年当時と同じレベルの食鋉をえること ができる，と読むことができる。

このヶースのように食粗供給と人口のバランスが急激 に崩れた場合，地域紛争が更に拡大し，食鋉生産や食粞 の分配が一局不平等になっていくことが䀐念される。

3）希望的シナリオによる将来予測（違成率 85\％）と必要条件

我々日本沙漠学会の立場で考えねばならないことは， このような急激なアンバランスを起こさないために食粉供給を増加させることである。 しかし，今までと同じよ うに機械力や化学物質を投入して土壌劣化を進行させる ことはできない。土㜔劣化も改善されなければならない し，同時に食粭増産に向かって単収も向上させなければ

図 9．土㜔出化（劣化程度進行の場合）。

図 10．人口と谼業生産（ケース 2 ）。

ならない。
このような希望を表わすものとして次のようなシナリ オを設定する。

（シナリオ3）

（1）土地利用は過去と同じベースで推移する。
（2）土壌劣化面秒は過去と同じペースで推移するが， 2000年頃から5年毎に強度劣化の 10% が中程度に，同じように中程度が軽度に，劣化の程度か回復される。
（3）当面単収向上指数は［北中米］並みに推移するが， 2000年頃から単収向上指数がその 2 倍程度（年 に 1.5 ポイント）の増加を示す。
このケースでは 2025 年の農業生産指数は 164 とな り，人口指数が 191 であるので，達成率 86% となる。

この数値が十分なものかどうかはわからないが，環境を維持しながらもある程度の単収向上が期待できることが証明され，食䊅不足も急激なものでなく，緩やかにやっ てくる状態であれば，精神的にも時間的にも余裕が生ま れて食粗消费の効率化（節約）と食相の公平な分配を期待することができるだろう。また，食鋉不足が経やかで はあるが構造的な問題であることが広く認識できれば，人類の理性が働いて人口增加を抑制する動機付けができ るかもしれない。

ケース 3 では， 5 年間で世界の平均単収が約 5% ずつ伸びていることを示している。我々に与えられた課題 は，土裏劣化を克服しなから，更に天候不順という条件 も含めてこれだけの数字をあげる技術を形作ることであ る．このように生産性を上げながら行なわれる持続的農

図11．土墥劣化（劣化程度回復の場合）。

図12．人口と農業生産（ケース3）。

業とはどんなものか，手幄れにならないうちに取りまと め，それを普及し，世界中で実施に移さなければならな い。既にそのための作業を始めなければならない時期に きているのではないだろうか。

4．食程増産の課題と技術

貧困が解消され教育レベルが上昇するに従って人口の增加率は低くなるといわれるが，国連などの努力によっ て世界的に医療が充実するようになったこともあって，前述（図3）のように，人口は今後数十年の間急激に增加すると予想されている。人口増加によって食粞の需要 は安定的に增えていくが，その一方で，展業生産には天

候不順や自然災害などの短期的なリスクが多いばかりで なく，沙漠化を含めた土壌劣化という長期的な抑制圧力 がかかっている。

これからの農業は，持続的農業であることか求められ ているが，単に生産䍗境を保全するだけでなく，需要の伸びに追い付くように生産我を伸ばしていく，という二 つの使命を同時に達成していくものでなければならない （岩田，1991）。

このような持続的農業とはどんなものなのか，特に沙漠開発においてどのような課題があるのか，土地開発，土地改良，生産技術，投入ェネルギーのそれぞれの側面 から整理してみよう。

1）土地開発

世界の土地利用（表3，4）を見ると，耕地面積（その他の地域，都市•道路•草地など）は増加しているが， それに見合うだけの森林面積が減少し，逆に人口増加の影響で一人当りの耕地面科は全ての地域で減少してい る。

つまり，近年の食糧增産の大部分は，耕地面䅡の拡大 ではなく，単位面積当り収䅹蚟（単収）の向上によって達せられてきたことがわかる。しかし，単収向上の勢い に陰りが見られる現在，耕地面積の拡大も重要な課題と なる。

沙漠は，広大な面積があり，しかも太晹エネルギーに恵まれた土地で，森林伐採を伴わずに耕地拡大ができる土地として期待されている。しかし，一般に沙漠は地力 が極めて低いか，降雨開が不十分である。但し，その中 でも，地力または水資源の面で有利な条件を備えている地域を選定し，土堷を改良することによって開発は可能 になるだろう。

我々がェジプトで開発したカッターラプロジェクト も，ナイルデルタから補給された地下水が地下 $20 メ ー$ トル前後にあるという，水資源の面で有利な条件を備え ていた例である。ここに防風林を作り，節水灌溉を热入 し，緑肥や堆肥を投入しながら土作りに取り組んできた あので，現在であ様々な作物か順調に栽培されている。

また，沙漠では，湿潤地に比べて太陽，風力，温度差 などのエネルギーが豊富である。これらの末利用エネル ギーを太陽電池，風力発電，風力による揚水システム，温度差を利用した集水システムなどに積極的に利用する ことも土地開発に必要な技術である。

2）土地改良

農業に適した土㙥とは，保水性や排水性，保肥力が高 く，通気性があって多様な微生物が存在する土壌であ る．このような土壤を作るために，客土や灌溉排水設備 を借える，また pH 値を調整するなどの機㭜的，化学的処理を施すことを土地改良という。

農業は，作物という形で土境の篒分を持ち出してい る．継続して農業を行なうためには失われた㚆分を補給 しなければならない。例えば焼畑は，自然の力で土壤が回復するまで耕作を行なわないことが基本であるが，そ のためには $10 \sim 20$ 年位の休耕期間をおかなければなら ないといわれる．短期間で莨分の補給を行なうために，現在の農法では化学肥料が使用されている。更に，養分 の補給にとどまらず，品質向上や収櫒照の增加，また連作による収皿低下を抑えることを目的に，大量に使用さ れる傾向にある。

農楽の大用使用が土壌中の微生物を死滅させること は，残留農薬の安全性など健康被害の問題からも類推し やすいか，化学段料の大用使用も土㵲環境を変化させる要因と考えられる。偏った成分，例えばカリゥムが残留 することによってカルシゥムアマグネシゥム，ホゥ案の欠乏症が発生したり，PH 値や徵生物の榜成か変化して土塆の風化が促進されるともいわれている。

乾燥地では，蒸発皿が卓越するため蒸発する水に溶け込んだナトリウム，カリウム，カルシゥム，マグネシウ ムなどの塩基類が地表近くの浅いところに集積しやす い。これが一定滞度以上になるといわゆる塩害と呼ばれ る現象を起こし作物の生育に障害となる。集積した塩類 は，リーチング（塩の洗脱）によって除去されるのが一般的な方法であるが，中でもナトリウムが多く集䖽する と土滾の透水性が低下して排水不良を起こし，その結果 リーチングの効果も低下する。

前述のエジプトの事例では，まず心土破砕を行なって土壌の排水性を向上させ，灌溉設備を使用してリーチン グを行ない，次いで緑耽や堆肥を投入して微生物相を増加させることにした。

また，土地改良技術を一連の栽培管理の中に取り入れ た方法もある。例えば素焼きの螜を土中に埋設し，壺の中に水を入れておくだけで，周囲に植え付けられた作物 の根图土塆の水分が自動的に保たれる。この方法は中近東に数百年の歴史をもつクーゼと㭔ばれる灌溉方法であ るが，この節水灌溉方法とヒッジ，ヤギ，野鳵などの曗 といった有機肥料によって農地を永続的に保全する努力 が払われている（久馬ほか，1991）． 18 世紀のイギリス ではそれまでの三囲式の輪作を発展させたノーフォーク式輪作か完成した。これは秋蒔きコムギと春蒔きオオム ギの作付けの間にマメ科の植物を植えて土墇中の窒素を增加させ，また根の深いカブを植えて作土屈を深くしな から家畜の眮料を得るというものである（前田•松尾， 1974）。

気象や土境，また作物や栽培方法によって土壤劣化の原因は異なるであろう。したがって，土地改良として取 るべき方法も地域差があって当然だが，どのように改良 するかを検討する基礎として，世界的に共通する土壊評価基準を定め，継続的にモニターすることが当面の課題 と思われる。

3）生産技術

現代の農法は，化学肥料や農楽の投入，機械化によっ て単収を増加させてきたか，このような技術によって，逆に持続可能な農業環境が挰なわれていることが指摘さ れている．それは，化学肥料による土墥劣化や機械化作

図14．一人当たりェネルギー使用皿．

業に向いた大規模展地の表土流失だけではない。例え ば，途上国では農楽使用量が顕著に増加しており，化学肥料と共に水質污染の主要な原因とされている。また，欧米でも補給㱏をはるかに超えた水㱏を潄溉に使用し，水源の枯渴を引き起こしている。

これからは，土壤か持続的に使用できるように保全す る咷法を選ばなければならない。このような農法とは，速効性か期待できる化学肥料や灌溉の使用量を必要灻小限に抑え，その代わり，長期的に再生産が可能な土壤徽生物の力を最大限に利用するものであろう。このような農法を実現するために，農地のエコシステムを徹底的に理解することがこれからの最重要な課題になろう。
水・エネルギー・生物資源を管理，保全するためには，

畜産や林業との複合経営も必要であろう．経済的には，例えば農薬や化学肥料の施用もきめ細かく行なうことが必要になるし，労動コストはむしろ增大することが予想 される，その反面，農楽•肥料•機械といった生産資材 のコストが軽減され，現代農法に起因する環境損失コス トが数通化されれば，経済的•瓄境的にすぐれた農泫が実現する可能性がある。

このような持続的䍚法を一気に汎用的な技術として確立することは困難であろう。その前に，現実の農地でひ とつずつ実証を積み重ねていかなければならないと思わ れる。乾燥地農業においても，いきなり何もないような沙漠の真ん中で持続的農法を試みるのではなく，水資源 や生物㥀䃄，更には農民といった人的資源において少し でも有利な条件を萰えたところから進めるべきではない

表6．技術の体系化．
1）劣化土壌の回復技術

排水組織	塩害防止	强度 $>$ 中程度 $>$ 軽度	農業活動
保水剤	節水，省エネ，土緟改良	強度＞中程度＞軽度	農業活動，過放牧
酎乾燥性作物	節水，飛秒防止	強度＞中程度	過放牧，乱䢒
酎塩性作物	飛砂防止，土壌改良	強度＞中程度	過放牧，乱警
ポリマー不透水莌	：塩害防止，節水	強度＞中程度＞軽度	工業産業，農業活動
ベッド栽培	塩害防止，省エネ	強度＞中程度＞軽度	工業産業，㖘業活動
海水淡水化	：資源利用	強度＞中程度＞軽度	農業活動

2）上壤劣化の防止技術

マルチ栽培	節水，省エネ	軽度＞中程度	農業活動
排水の再利用	節水，省エネ	軽度＞中程度	農業活動
ウォーターハーベス	資源利用	㪕度＞中程度	農業活動，過放牧
植栽種の選定	資䃄利用，持続性	軽度 $>$ 中程度 $>$ 強度	：䍔業活動，過放牧
地下水探査	資源利用	軽度 $=$ 中程度 $=$ 強度	農業活動，過放牧，
地下タム	资源利用	軽度＞中程度	：過放牧，乱㺘

3）単位面積収昷の向上技術

節水灌溉	：省エネ	軽度＞中程度＞（強度）	農業活動
低燃㙖農業機械	：省エネ	軽度＞中程度	带業活動
高収早作物	：食料增産	軽度＞中程度	農業活動
土塿改良剤	食料增産	軽度 $>$ 中程度	㖘業活動
4）持続的農業技術			
作付体型	：持続性向上	軽度＞中程度	農業活動
栽培技術	：持続性向上	：軽度 $>$ 中程度＞強度	带業活動，過放牧
菌バクテリアの活用	：持続性向上	軽度＞中程度	農業活動，過放牧
促成堆肥	：持続性向上	軽度＞中程度	農業活動
アグロフォレストリー	：持続性向上	：軽度＞中程度	：農業活動，過放牧
未利用エネルギー （太陽，地熱，バイ	：資源利用 マス)	軽度＞中程度＞強度	農業活動，過放牧
モ二タリング	：持続性向上	：軽度 $=$ 中程度 $=$ 強度	：全ての原因
啓蒙，普及	：持続性向上	：軽度 $=$ 中程度 $=$ 強度	：全ての原因

だろうか。

4）投入エネルギー

農業生産に投入するェネルギーを節減することがこれ からの基本的な検討課題になると思われるか，国連統計局と世銀による資料では，1979年から1989年までの 10 年間に商用エネルギー（石油，天然ガス，石炭，原子力，水力）の消亜量は世界全体で 18% 増加した。一方で は確かに省エネ努力も進められており，先進工業国では国全体としての商用エネルギーの消費を抑えることに成功している所もあって，多くの地域で省エネか進むこと か期待される。

また，部門別商用エネルギー使用势を見ると，ほとん どの国で豊業部門は $0 \sim 10 \%$ 末満である。逆に，工業お

よび運輸交通部門での使用且は約 70% を占め，この部門で省エネ技術が進歩し，その 30% 程度でも省エネが実現すれば，工業や通翰交通部門での効果が大きいだけ でなく，農業部門においてもその波及効果で省ェネか進 み，土鎄劣化の防止にも役立つだろう。また，現在総エ ネルギー消費用の約 6% を占めている伝統的燃料（薪，
家畜フン）を商用エネルギーに転換させることによっ て，薪炭材を採集するために引き起こされている森林破壊の一部を抑制することも可能だろう。
未利用資源の利用や，省エネ技術によって，今までの ような商用エネルギー・伝統的燃料の使用を抑えること か持続的農業を確立するためには重要になってくる。

表 7．持続的展業を実現するための䍗境整備。

く理解して利用する	知識 \rightarrow 技術 \rightarrow 産業界
－持続的教業，開発によってのみ人類か生存	理解 \rightarrow 教有 \rightarrow 教育機関
短期間では投晟超過になるか生存のために必要な投資	経済力 \rightarrow 政治 \rightarrow 行政械関

5．技衒の体系化

持続的農業を実現し，安定した食鋉生産を目指すため には多面的なアプローチが必要である。しかも，これら は全て日本沙漠学会や乾燥地農学分科会で取り組もうと している分野と一致している。沙漠もなく，土㒔劣化も少ない日本ではあるか，日本沙漠学会その他で発表され る研究開発を見ていると実用化に近付いている技術や世界的にも注目される研究か数多く見られるようになって いる．しかし，まだ個別技術の開発であったり，限られ た地域を対象にした研究であったりするのか現状ではな いだろうか。
今後，日本沙漠学会を中心に何か具体的な提案を行な うためには，どこかでモデル地区を選定し，どの程度環境改善と食頪增産が達成できるか定鼻的に実証する研究 を行なうことが必要ではないかと考えられる。

このような行動を起こすためには袮数の個別技術や研究成果を組み合わせる必要があるだろう．どのような技術や研究を結びつければよいか，また，目的を達成する ためにどのような分野か弱点になっているかっというこ とを考える作業の第一段階として，個々の技術を体系化 することを提案したい。
乾燥地農学で話題になる技術か特続的農業の中でどの ような機能をもち，土壤劣化の程度および原因とどのよ うに関わっているかを区分した上で，劣化土墇の回復技術，土垻劣化の防止技術，単位収居の向上技術，持続的農業技術の四っのカテコリーに分類した例を表6に示 す．
上記の表は，いくつかの例を示したものにすきない かっ ある程度時間をかけて技術の内容を吟味することに よって，それぞれの技術や研究相互の関わりがわかりや すく表現できると思われる。
前項では人口と食相供給のバランスを表わすグラフを示した。今度は，個別技術またはそれらの組み合わせ技術か持続的農業にどの程度寄与するかっこれらの技術が どれくらいの価値をもっているのか，何か定而的に評仾 する方法を检討してみたいものである．

6．まとめ
ここまでの検討で，人口増加と食枳增産かどのような バランスを示すのか，それに対して今後は持続的な農業技術か必要になること，そのために今まで個別に進めら れてきた研究をまとめることによって具体的な成果を上 げる時期にきていることを述べてきた。

しかし，持続的麇業も今までの農業と同じように技術開発だけで進歩できるものではなく，次に示すような周辺の浢境が整わなければ成果につなからないであろう。
様々な立場の人々に参加を呼び掛け，輻広いセクター を包含して議論を進め，統一性のある目標をかかげて，効率的に具体的な成果に結び付ける。このような場を提供することかっ，日本沙漠学会や乾燥地農学分科会の役割 ではないだろうか。
なお，本論では珧境コストについて言及しなかった。本文でも述べたように，近代眔業では機械力や化学肥料 といった工業的技術で土地生産性を飛瞿的に向上させて きた，その結果引き起こされた土権劣化は資獂の損失で あり，明らかに長期的な費用損失である。例えば，蜦作体系を贸入して地力の維持を図るために一時的に経済性 の低い作物を栽培するとか，地力回復を図るために経済性を求めない防風林を作ることは，この费用損失を補う ものとして経済的に評価しなければならないのではない だろうか。

甜

本稿に対し，国際劦カセンターの高林国雄先生から，下記のコ メントをいただいた，年者らもまったく同感であり，ここでもの内容を紹介させて頂くと共に深射する次第である。

1）GNP が伸びれば消䨘カロリーが增えるという関係がある一方で，朄では＇50年代に 3,500 カロリーだったものかs＇70年
 が見られる，また，アシアではカロリーではなくタンバク質やビ タミンが不足しているといわれており，絶対円を食へろことが必ずしもいいことではない，ということを認誰させる努力も必要だろう。

2）FAO や世銀のデータを使うとどうしても悲䭒的な予測に なりがちであるか，大変だというのがFAOの仕事でもある。食粗の生産斗としては 2% 程度の余裕があるというデータもある。欧米に偏在しているということが問題で，欧米は余った食梅を安い価格で途上国に送る，その安さのために途上国の農民が生産意欲をなくすことにつながる。ウルグアイラウンドなどを通

> じて，欧米ではヤミクモに作り過きず，途上国も援助に慣れ過き ないようにして自分たちでも作るような方法を考えなければな らない。このような視点も含めて，悲観的な予測ばかりに偏らな い考え方が我々には必要だ。
> 3）人口予剆にしても，先程の 85 億という数字か椬伝される が，＇60年から＇85年の間の途上国の人口増加か $3 \sim 4 \%$ の予測 に対して，実際は 2.5% 程度だったという報告もある。それにし ても，先程の人口予測シナリオの取低しベル位には垪えそうだ か，世界で行なわれている様々な努力も評価しなければならな い，悲银論に偏ることなく，楽钼論もうまく評価して，結詇で言 われたようなインテグレートされた研究を進めなければならな い。

会。
世界盗碩研究所，国速理境計画•国速開発計画劦力（1992）：「世界の资願と现境，1992－1993」日本語版，タイヤモンド社 ワールドゥォッチ研究所，レスター・R・ブラウン（1990）「地球白作＇90－＇91」日本語版，タイアモンド社。
FAO（国迚食枳農業機関）（1992）：「FAO 豊業生産年報， 1991年」
Unitied Nations Population Division，Long－Range World Population Projections：Two centuries of populaiton growth，1950－2150．United Nations，New York，forthcom－ ing．Executive Summary．

参考文献

岩田進午（1991）：「土のはたらき」家の光協会。

Perspectives to Survive in the Next Century
 －Food production and population change in the 21 th century－

Yoshihiko Hiraga＊and Satoshi Matsumoto＊＊

The desertification is one of the global environmental problems．
It is said that total desertified area is being expanded six million hectares a year．In this article，we tried to figure out how much the desertification would affect world food sufficiency in near future．

The desertification is a part of soil degradation，which is considered as a major function of decreasing productivity of agricultural land．On the other hand，the food production is being increased by improvement of productivity by the application of new cultivation technology．Food production change would be deter－ mined by estimating balance of positive and negative influence．

The world population is steadily increased，and this means food demand will be steadily increased．The future food sufficiency would be estimated by seeing demand and supply change．Through this process， quantitative relation between desertification and food sufficiency would be evident．

In order to visually indicate these correlation，optimistic model（ 105% food sufficiency at year of 2025）， pessimistic model（ 70% sufficiency），and desirable model（ 85% sufficiency）are prepared．And possibility or necessity of conditions which would achieve to realize these models are considered．

Based on above consideration，a suggestion to the Japanese Association for Arid Land Studies related to subjects to be urgently studied is added．

Key Words：Desertification，Food sufficiency，Population change，Productivity，Soil degradation，Sustainable agriculture

[^1]
中国タクラマカン砂漠の陸水，降水の同位体的，化学的特性

高橋和也＊•張

韓

勁＊＊•黄 子蔚＊＊＊•熊 建 民＊＊＊•村山治太＊＊＊。春 雨＊＊＊＊＊•増田彰正＊＊＊＊＊＊•牛木久雄＊

1．まえがき

水分子を構成する酸素と水素の同位体比は，天然水の置かれた自然環境にしたがって特徴のある値をとった り，変化をしたりすることが知られている。したがって， ある地域の天然水の同位体比の特性を明らかにすること ができれば，逆にその地域の自然環境の特性を化学的な側面から解析することが可能である。現在地球理境の急激な変化の中で最も敏感に嫄境変化が起こっているとい われる乾燥地において，このような立場からその現状と変動の側面を明らかにしていくことがこの研究の目的で ある。
科学技術庁「砂漠化機椎の解明に関する国際共同研究」における同位体水文学的調査では，中国新㠔ウイグ ル自治区タクラマカン砂漠を対象とした研究に取り組ん でいるか，この研究計画が開始された時点では次に述べ るような問題点や，いくつかの既存の成果か知られてい るに過ぎなかった。
国連の国際原子力機関（IAEA）では世界気象機関 （WMO）と協力して，1960年代から全地球的な降水中の安定同位体比の測定を実施してきた。IAEA の同位体水文学の出版物（IAEA，1981）によると，インド亜大陸北側に広がる中央アジアの大部分と旧ソ連邦のアジアの大部分がデータの空白部となっていた。この空白は東西の冷戦による国際協力の欠落と，発展途上国地域にみられ る地域的科学技術レベルの差から生じており，中国新揋 ウイグル自治区はまさにその典型的な空白部に相当して いることがわかる。 ソ連邦と東ヨーロッパの政治的変化 によってこの様な状況は急速に改善されつつあるか，同位体的水文環境に対する全地球的な観測網は未だ完全で はない。中国新槛ウイグル自治区でも中国自身による測定成果や外国との協力による測定の報告が近年みられる ようになったか（中国科学院開州冰川凍土研究所， 1988；林ほか，1987；Fushimı，et al．，1989；杉本，1988），

何れもデータとしては地理的にも時間的にも断片的な段階にとどまっている。したがって我々の研究は，タクラ マカン砂漠に関する研究だけでなく，上記に述べてきた全地球的な環境観測網整備の一環と言う意義をも有す る。

一方，砂漠においては水は物質の移動にも深く関わっ ており，特に河川においては塩類の堆槛に深く関与して いる。即ち，山岳部から平野部に至る間に，河川水（お よび地下水）は地表あるいは地表近くの物質と相互作用 を起こしつつ最後に砂漠内へ消えていく，その間に，溶解，沈殿等様々な化学作用，物理作用を受けつつ河川は その水質を変えなからら，溶存物質を運んでいく。した がって河川水の溶存物質を解析することにより，集水域 の地球化学的現境や塩類化土塆の堆積環境を解析した り，あるいは逆に，集水域の推測や水の移動状況を解析 したりするのに役立つものと考えられる．

以上のように，本研究では，降水や地表水等の同位体組成（酸素，水案の同位体組成）および溶存成分の化学的，同位体的解析を併せて行ない，水文環境の解析を行 なうことを目的としている。本報告においては，平成2年度および 3 年度に行なった現地調査で採取された試料の同位体，化学分析および測定結果の解析結果につい て述べる。

2．研 究方 法

1）現地鯛査

平成 2 年および平成 3 年の 10 月に約 3 週間にわた り，中国新騒ウイグル自治区のタクラマカン砂漠におい て中国科学院新嘼生物土壌沙漠研究所と共同で現地調査 を行なった。調査地点はタクラマカン砂漠中央部の南縁 に位䭅する和田地区（策勒周辺を含む），タクラマカン砂漠西部の喀什周辺（蓋孜河流域等），和田と喀什の間の地域（莎車，皮山等），およびタクラマカン北部の阿克蘇周辺域である。一方，策勒周辺域の平地部と山間部におけ

[^2]

Fig．1．Sampling localities around Taklimakan Desert in 1990 and 1991.

る降水試料の採取も依頼した。河川水試料採取時には，可能なかぎり水温， pH や電気伝羿度などを測定した。

採取した武料については，その同位体的および化学的解析を順次行なっているが，本報告では平成 2 年度現地調査における採取試料全部と平成 3 年度採取分の一部 について述べる。現地調査による試料の採取地点の概略 をFig． 1 に，試料のリストおよび測定した pH や䉓気伝檪度を Table 1 および Table 2 に示す。また，後述す る，㪕元素（酸素，水索）同位体組成の測定においては，平成2年の「日中共同カガシリ科学探検プロジェクト」 において採取された試料についても解析を行なった。

2）同位体組成，化学分析

持ち返った水試料は 2 つに分け， 1 つは酸素わよび水案同位体組成の分析を行ない，残る 1 つを孔径 $0.2 \mu \mathrm{~m}$ のメンブランフィルターで朗過し細粒分を除去した後，化学分析 $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{SO}_{4}^{2-}, \mathrm{Cl}^{-}\right)$に供し た。また， Sr の同位体比を浏定した。酸絮と水索の同位体分析については，岡山大学地球内部研究センターおよ び，三菱マテリアル中央研究所で便宜を計っていただい た．一方， Sr の同位体比は理化学研究所の SECTOR－54 にて測定した。また，化学分析は，ICP 発光分光分析計 およびイオンクロマトグラフィーを使用して行なった。

得られた結果の解析について以下述べていく。

3．結果および考察

1）㪕元素（酸䋱，水素）同位体組成

天然水の酸索と水絮の同位体比は，IAEA の標淔平均海水（Vienna－SMOW）に対する千分偏差値 $\delta^{18} \mathrm{O}, \delta D$ と して示すが，それはそれぞれ次の式で表わされる。

$$
\begin{aligned}
& \delta^{18} \mathrm{O}=\left\{\frac{\left({ }^{18} \mathrm{O} /{ }^{18} \mathrm{O}\right)_{\text {Sample }}}{\left({ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}\right)_{\text {sMOW }}}-1\right\} \times 1000\left(\%_{0}\right) \\
& \delta D=\left\{\frac{(D / H)_{\text {Sample }}}{(D / H)_{\text {SMOW }}}-1\right\} \times 1000(\%)
\end{aligned}
$$

天然水の同位体比では，採取した試料を水循䁲の視点 から区分してそれぞれの $\delta^{18} \mathrm{O}$ と δD の値の分布の関係 を見ると次のような分布式に従うことが知られている。
$\delta D=S c \times \delta^{18} \mathrm{O}+d$
（DANSGAARD，1964）
この式の中で，$S c$ は天然水がおかれている頊境にお ける乾燥度によって決定され，d は天然水の水蒸気とし ての起碩を示すと見なされている。ちなみに，ほぼ同位体交換平衡下で降った天然水の $S c$ は 8 であり，d の世界的平均は 10 である（Craig，1961）。一方乾燥地域にお いては，$S c$ は 5 まで減少し，また，冬の地中海や日本海

Table 1．The list of samples taken in 1991 in Tarim Basin．

Sample code	Date	Time	$T\left({ }^{\circ} \mathrm{C}\right)$	pH	$\begin{aligned} & \text { Conductivity } \\ & (\mathrm{mS} / \mathrm{cm}) \end{aligned}$	Latitude（North）	Longitude（East）
A－6	911009	1445	20.9	7.0	2.18	$37^{\circ} 02^{\prime} 37^{\prime \prime}$	$80^{\circ} 35^{\prime} 24^{\prime \prime}$
A． 8	911009	1610	21.0	7.4	6.85	$37^{\circ} 01^{\prime} 39^{\prime \prime}$	$80^{\circ} 34^{\prime} 23^{\prime \prime}$
C－4	911010	1313	16.0	8.7	9.11	$36^{\circ} 59^{\prime} 15^{\prime \prime}$	$80^{\circ} 39^{\prime} 25^{\prime \prime}$
C－5－1	911010	1452	15.4	7.5	5.77	$36^{\circ} 58^{\prime} 47^{\prime \prime}$	$80^{\circ} 38^{\prime} 55^{\prime \prime}$
C－5－2	911010	1520	19.4	8.5	6.75	$36^{\circ} 58^{\prime} 47^{\prime \prime}$	$80^{\circ} 38^{\prime} 55^{\prime \prime}$
C－10	911010	1840	16.3	7.4	1.06	$37^{\circ} 00^{\prime} 12^{\prime \prime}$	$80^{\circ} 44^{\prime} 11^{\prime \prime}$
E－1	911011	1240	13.4	6.7	0.98	$36^{\circ} 57^{\prime} 25^{\prime \prime}$	$81^{\circ} 13^{\prime} 05^{\prime \prime}$
E－2	911011	1430	17.9	7.4	26.40	$36^{\circ} 58^{\prime} 00^{\prime \prime}$	$81^{\circ} 11^{\prime} 24^{\prime \prime}$
E－3	911011	1520	18.4	7.4	5.49	$36^{\circ} 58^{\prime} 12^{\prime \prime}$	$81^{\circ} 11^{\prime} 33^{\prime \prime}$
E－7	911011	1730	15.3	7.0	0.70	$36^{\circ} 50^{\prime} 35^{\prime \prime}$	$81^{\circ} 15^{\prime} 23^{\prime \prime}$
G－1	911012	1320	16.5	7.0	17.60	$37^{\circ} 01^{\prime} 20^{\prime \prime}$	$80^{\circ} 52^{\prime} 51^{\prime \prime}$
G－2	911012	1540	13.8	7.6	1.19	$36^{\circ} 59^{\prime} 04^{\prime \prime}$	$81^{\circ} 05^{\prime} 07^{\prime \prime}$
G－3	911012	1620	13.1	7.7	0.49	$36^{\circ} 54^{\prime} 31^{\prime \prime}$	$81^{\circ} 05^{\prime} 12^{\prime \prime}$
G－4	911012	1650	13.9	6.8	0.54	$36^{\circ} 59^{\prime} 11^{\prime \prime}$	$81^{\circ} 04^{\prime} 35^{\prime \prime}$
G－5	911012	1950	10.6	7.1	1.07	$36^{\circ} 56^{\prime} 23^{\prime \prime}$	$80^{\circ} 47^{\prime} 48^{\prime \prime}$
I－2	911013	1120	11.5	6.7	0.76	$37^{\circ} 15^{\prime} 14^{\prime \prime}$	$79^{\circ} 45^{\prime} 35^{\prime \prime}$
I－8	911013	1420	16.3	7.4	1.26	$37^{\circ} 32^{\prime} 51^{\prime \prime}$	$79^{\circ} 57^{\prime} 12^{\prime \prime}$
I－10	911013	1620	18.9	7.1	1.76	$37^{\circ} 39^{\prime} 20^{\prime \prime}$	$80^{\circ} 05^{\prime} 40^{\prime \prime}$
K－1	911014	1615	14.8	7.0	0.95	$37^{\circ} 33^{\prime} 44^{\prime \prime}$	$78^{\circ} 14^{\prime} 08^{\prime \prime}$
K－2	911014	1720	13.1	6.8	0.98	$37^{\circ} 51^{\prime} 18^{\prime \prime}$	$77^{\circ} 32^{\prime} 34^{\prime \prime}$
K－3	911014	1830	16.3	7.0	0.76	$38^{\circ} 02^{\prime} 16^{\prime \prime}$	$77^{\circ} 19^{\prime} 27^{\prime \prime}$
K－4	911014	1910	15.2	7.5	0.43	$38^{\circ} 24^{\prime} 55^{\prime \prime}$	$77^{\circ} 14^{\prime} 22^{\prime \prime}$
M－1	911015	1015	4.8	7.5	5.17	$38^{\circ} 29^{\prime} 38^{\prime \prime}$	$76^{\circ} 47^{\prime} 11^{\prime \prime}$
M－2	911015	1135	6.3	7.2	0.65	$38^{\circ} 43^{\prime} 17^{\prime \prime}$	$76^{\circ} 19^{\prime} 57^{\prime \prime}$
M－3	911015	1220	12.8	7.1	1.34	$38^{\circ} 53^{\prime} 13^{\prime \prime}$	$76^{\circ} 12^{\prime} 23^{\prime \prime}$
M－4	911015	1345	11.0	6.8	1.63	$38^{\circ} 58^{\prime} 36^{\prime \prime}$	$76^{\circ} 11^{\prime} 56^{\prime \prime}$
O－1－1	911016	1430	2.5	7.0	0.14	$38^{\circ} 22^{\prime} 55^{\prime \prime}$	$75^{\circ} 00^{\prime} 48^{\prime \prime}$
0－1－2	911016	1455	9.6	7.0	0.20	$38^{\circ} 26^{\prime} 17^{\prime \prime}$	$75^{\circ} 02^{\prime} 34^{\prime \prime}$
O－2	911016	1540	6.1	7.0	0.15	$38^{\circ} 39^{\prime} 16^{\prime \prime}$	$74^{\circ} 58^{\prime} 25^{\prime \prime}$
O－3	911016	1620	7.5	7.0	0.25	$38^{\circ} 39^{\prime} 35^{\prime \prime}$	$74^{\circ} 55^{\prime} 36^{\prime \prime}$
0－4	911016	1745	5.8	7.0	0.31	$38^{\circ} 46^{\prime} 26^{\prime \prime}$	$75^{\circ} 18^{\prime} 56^{\prime \prime}$
0．5	911016	1855	10.4	7.1	0.36	$38^{\circ} 58^{\prime} 42^{\prime \prime}$	$75^{\circ} 31^{\prime} 31^{\prime \prime}$
0．6	911016	1955	14.4	7.0	0.44	$39^{\circ} 18^{\prime} 00^{\prime \prime}$	$75^{\circ} 32^{\prime} 13^{\prime \prime}$
0－7	911016	2030	14.4	7.1	0.56	$39^{\circ} 17^{\prime} 13^{\prime \prime}$	$75^{\circ} 46^{\prime} 58^{\prime \prime}$
0．8	911016	1315				$38^{\circ} 16^{\prime} 23^{\prime \prime}$	$74^{\circ} 54^{\prime} 54^{\prime \prime}$
Q－1	911017	1120	9.6	6.8	0.71	$39^{\circ} 25^{\prime} 55^{\prime \prime}$	$75^{\circ} 55^{\prime} 01^{\prime \prime}$
Q－2	911017	1220	9.6	7.5	0.94	$39^{\circ} 35^{\prime} 18^{\prime \prime}$	$75^{\circ} 58^{\prime} 50^{\prime \prime}$
Q－3	911017	1310	11.3	7.4	1.28	$39^{\circ} 42^{\prime} 54^{\prime \prime}$	$76^{\circ} 08^{\prime} 23^{\prime \prime}$
Q－4	911017	1405	13.6	7.1	2.89	$39^{\circ} 47^{\prime} 56^{\prime \prime}$	$76^{\circ} 23^{\prime} 52^{\prime \prime}$
Q－5	911017	1445	15.5	7.1	4.19	$39^{\circ} 51^{\prime} 43^{\prime \prime}$	$76^{\circ} 43^{\prime} 42^{\prime \prime}$
Q－6	911017	1830	17.3	7.0	0.61	$39^{\circ} 14^{\prime} 15^{\prime \prime}$	$76^{\circ} 09^{\prime} 59^{\prime \prime}$

を起源とする水蒸気からの降水は，d が 20 以上となる
ことが知られている。

〈河川水〉
平成 3 年度においての酸索，水索同位体分析結果が求 められたのは次の 4 地区である。

Table 2. The list of samples recovered in the 1990's field investigation.

Sample Code	Date	Time	$T\left({ }^{\circ} \mathrm{C}\right)$	pH	$\begin{gathered} \text { Conductivity } \\ (\mathrm{mS} / \mathrm{cm}) \end{gathered}$	Sampling Location
TK-1	901013	900				Urumqi guest hous
TK-2	901015	900				Hetian Hotel
TK-3	901015	1925	21.0	6.5	0.72	Pisan
TK-4	901016	1550	12.5	7.0	1.13	Chira
TK-5	901017	1135	11.2	8.80	0.31	Yurungqashi River
TK-6	901018	1230	12.9		1.04	Ing $\mathrm{Ba}{ }^{\prime} \mathrm{gh} /$ Asanateni
TK-7	901018	1650	16.1	7.50	1.93	Yo 'ghan To 'gheaq
TK-8	901018	1900	15.7	7.0	0.87	Keriya
TK-9	901019	1305	3.4	7.0	0.51	Be 'ghatSulaq
TK-10	901019	1640	7.6	7.0	0.56	Langar Su Ambre
TK-11	901020	2130	4 (?)	7.0	0.49	Nur
TK-12	901021	1230	9.7	7.0	1.06	An ereq
TK-13	901021	1440	18.0	7.5	0.70	Damku
TK-14	901021	1615	12.5	8.0	1.25	Qarqi Ustang
TK-15	901021	1655	13.8	8.0	0.70	?($=$ TK-13?)
TK-16	901021	1710	19.3	8.0	2.92	Pakhtalaq Ustang
TK-17	901022	1600	14.5	7.5	0.88	Qarqashi River
TK-18	901023	1135	6.4	8.3	0.48	Tong Ghuzlaq
TK-19	901023	1440				Yurungqashi River
TK-20	901023	1440				Yurungqashi River
TK-21	901023	1440				Buya River
TK-22	901023	1645	11.0	8.0	6.65	Buya River
TK-23	901023	1705	9.6		6.48	Buya River
TK-24	901023	1725	6.2	7.5	1.99	Buya River
TK-25	901023	1800				Buya River
TK-26	901024	1345	8.9	8.0	0.81	Sanju Dariya
TK-27	901024	1550	12.4	7.5	2.81	Qarakul
TK-28	901024	1630	10.7	6.8	2.71	Qarakul
TK-29	901024	1740	9.7	7.5	0.82	Muji
TK-30	901024	1815	10.7	7.3	1.55	Duwa
TK-31	901024	1930	21*	7.5	36.40	Qumuch
TK-32	901026	1215				Ya (?); Kucha Malla
TK-33	901026	1700				Gucan Bag Yol
TK-34	901028	835				Akusu Hotel
TK-35	901028	1750	11.0	7.5	2.40	Alar
TK-36	901028	1930	11.0	7.8	0.50	Akusu River
TK-37	901029	1615	6.4	6.8	0.22	QumAreq, Shikhal
TK-38	901029	1745	10.7	8.0	0.53	Shikhal
TK-39	901029	1840	8.3	6.5	0.24	Shikhal
TK-40	901030	1115	8.1	7.0	0.30	Akusu River
TK-41	901030	1245	8.9	7.5	0.44	Senli-River waterway
TK-42	901030	1610	10.8	8.0	3.83	Achal
TK-43	901030	1810	11.4	7.5	0.36	QumAreq, Shikhal

Fig．2．$d^{18} \mathrm{O}$ vs．$d D$ plots for the river water samples from the Tarim Basin．
b．ホータン（和田）地区
c．アクス（阿克鮽）地区
d．チェルチェン（且末）地区
これら 4 地区の測定結果を $\delta^{18} \mathrm{O}$ vs．δD 図にまとめる と Fig． 2 のようになる。

全体の同位体比分布の上では，ホータンとチェルチェ ンの 2 地区が最も高く，アクス地区がこれに次き，カ シュカル地区が最も低い。一般に降水の同位体比は大陸 の内陸側ほど低くなる傾向があるから，同位体比の希釈化の面でいえば，カシュガルが最も内陸的であるという ことになる。
ホータン地区では内陸深くに集水域をもつカラカシ河 がそれに合流するヨロンカシ（玉龍喀什）河よりも同位体比が高く，ケリヤ河はカラカシ河と同じレベルの同位体比である．またホータン地区の小水系の河川は高い同位体比をもつ傾向がある。
4 地区の河川試料のうち水系内での同位体比の動きか明確な 4 水系について，その $\delta^{18} \mathrm{O}$ vs．δD 式における $S c$ を直線回帰で求めた。その結果は Table 3 にまとめた。

4 水系のうち $S c$ が低いのは，チェルチェン河下流 （ $S c=3.9$ ）とアクス河 $(S c=4.0)$ である。一方，タリム河 （ $S c=4.6$ ）とヶリヤ河 $(S c=5.5)$ は $S c$ が高く，チェル チェン河の上流部でほぼ8に等しい。
$S c$ の値から言えば，チェルチェン河下流部とアクス河では，他の水系にくらべて地表水の蒸発が激しい環境

Table 3．The list of Sc values and δD for the rivers in Tarim Basin

River	$S c$ value	δD
Kashigar region		
Gez River	-	$-88.3 \sim-78.3$
Hotan region		
Keriya River	5.5	$-58.7 \sim-47.5$
Aqsu Region		
Aqsu River	4.0	$-79.1 \sim-72.7$
Charchan region		
Charchan River		
upper reaches	8.0	$-66.2 \sim-61.4$
lower reaches	3.9	$-55.6 \sim-46.4$
Tarim River	4.6	$-66.8 \sim-50.3$

にあることが推定される。これはこの水系がおかれた沓境がより乾燥的であることを意味している。
チェルチェン河の上流部はアルトゥン（阿爾金）山眽 の山間部で標高も高く，したがって気温も低い。試料の採取された時期は夏であるが，予想以上に降水の頻度が高かったと報告されている，チェルチェン河上流部の Sc かs 8 に近いのは，こうした湿潤䍗境を示唆している あのと考えられる。

カシュカル地区の河川水の測定値はまだ数が少ないた めに瓄境条件について意味のあることはいえないか，測

Table 4．The variation of Oxygen and Hydrogen isotopic compositions during one week in Yurungqashi River

Sampling date and locality	$\delta^{18} \mathrm{O}$	δD	d
17 October 1990，			
玉龍喀什大橋	-10.5	-67.9	15.9
23 October 1990，	-9.7	-57.8	19.5
Tong Ghuzlaq	-9.5	-52.3	23.8
A junction（Buya river）	-9.7	-58.5	19.0
The upper side from the junction			

Fig．3．$d^{18} \mathrm{O}$ vs．$d D$ plots for the lake water samples from Xinjiang．

定値の分布が比較的不規則に見えるのは，この地域の流系が本来網状であることや人工の水路か錯綜しているこ とに関係している あのと思われる。

1990 年の調査では，ョロンカシ河の試料採取が偶然 1 週間にわたってしまった。測定の結果，先に採取した下流側の試料の同位体比が，後で採取した上流側の試料 にくらべてかなり高い値をしめしていることがわかった （Table 4）．同位体比の変化は δD で 10 近くあるばかり でなく，d の增加も 16 から 20 と著しいことかわかる か，この 2 試料の採取時期のずれの間にヨロンカシ河の水源に著しい変化が起こったと推定される。一般に河川水の同位体比は年間を通じて動きが少ない場合が多い か，タクラマカン砂漠の周辺では，大きな変動を示す河川があるのかも知れない。河川の水試料の採取に当たっ ては今後この点に留意する必要がある。

〈湖沼水〉

湖沼水の採取はタクラマカン砂漠周辺の高地からのも

のである．試料数はまだ十分ではないが，カシュガル地区のパミール高原から1件，ウルムチ東部のボゴダ山系加ら1件，さらにアルトゥン山脈を越えたチベット高原地帯にあるココシル（可可西里）山脈地域から 7 件の式料を得ることができた。
測定値の $\delta^{18} \mathrm{O}$ vs．δD 図を見ると湖沼水の同位体比は地域毎に大きな差があることがわかる（Fig．3）．

ココシル山脈の湖沼水の同位体比分布は明らかに地域的気候特性を示しており，その分布の直線回帰は次の式 となった。

$$
\delta D=4.1 \times \delta^{18} \mathrm{O}-2.1
$$

この地域の湖沼の水源がチェルチェン河の夏の河水を涵餈している降水と同一であるとして，チェルチェン河 の上流部の要の河水の同位体比分布線と組み合わせて， その水源の同位体比を求めると，

$$
\delta^{18} \mathrm{O}=-3.1, \delta D=-14.8\left(\%_{0}\right)
$$

という値となった．但しチェルチェン河上流部の夏の降

Fig．4．$d^{18} \mathrm{O}$ vs．$d D$ plots for the natural water samples from the Tarim Basin．

Fig．5．Plot of conductivity against $d^{18} \mathrm{O}$ for the surface water samples from the Tarim Basin．

水の同位体比分布線はチェルチェン河の河水の同位体比 の分布線と同一として，次の式を用いた。

$$
\delta D=8 \times \delta^{18} \mathrm{O}+10
$$

ここで求めたココシル山脈地域の湖沼の水源の推定同位体比は，タクラマカン西部の河川水の同位体比に比べ るとかなり高く地域的特殊性を示すものと考えられる。

〈降水〉

1990年の現地調査の際にホータン地区とアクス地区 で降水の採取依頼をした。このうちホータン地区の冬の降水の試料 8 件が集まった。

タクラマカン砂漠周辺では，この地域の西部に広がる

Fig．6．Plot of cation abundances against $d^{18} \mathrm{O}$ for Keriya river samples．

高山地帯では主な降水の季節が冬であるため，同様に冬 が重要な降水時期である可能性が考えられた。そのため冬の降水の同位体比が他の天然水の同位体比に比べてど の様なレベルで現われるのかを確認する必要があった。測定結果をみると，ホータン地区の冬の降水の同位体比 はタクラマカン砂漠各地の河川水のものとは大きく異な るレベルに現われることがわかった（Fig．4）採取した降水試料の同位体比は地表水より，δD で 50% も低く，同位体比分布の直線回帰で得られた d も 4.6 という小さ い値であった。この結果から，タクラマカン沙漠地域に おける冬の降水のこの地域の地表水に対する寄与は大き

くないことがわかる．また Wushikı（1981），によると， チベット高原を中心としたアジア中央高地の縁辺部で は，氷河の水の \boldsymbol{d} 値が，それを涵養している降水の起源 によって，いくつかのゾーンに分かれていることが報告 されている．ヒマラヤから時計まわりに，カラコラム， ヒンズークシ，パミール，天山とたどって行くと，各水河地帯の d 値は，氷河を涵篒する降水の水蒸気の流入経路や季節にしたかっていくが，アフガニスタンのヒン ズークシからパミールにかけての冬の降水域の氷河地帯 で最も小さな値（ $d=7 \sim 13$ ）を取ることが注目される。 d値が低下する㑯向と，冬の降水が優勢であるという特徽 は，ホータンの冬の降水の同位体特性に一致している。

一方，杉本（1988）によれば，ホータン地区の河川の源頭である西芘崙山脈では，夏の降水の同位体比が δD で -50% 高い値を取ることか報告されている。これらの事実から，ホータン地区の河川の涵瑶は主として夏の山間部における降水によるものと推定される。

2）河川水の化学組成の解析

主として調査対象としたのは，ヨロンカシ河，アクス河，ケリヤ（克里雅）河である。

〈全体の概要〉

各河川の全体的傾向としては，日本の河川と比べて溶存物質が多く，特に $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$の割合が多く，相対的に $\mathrm{Mg}^{2+}, \mathrm{Ca}^{\mathbf{2 +}}$ の方が少ないことが挙げられる。これは一 つには，元亚の移動能を反映しているものと考えられ る．即ち，この地域では蒸発が著しく，アルカリ土類金屈元索（ Ca, Mg etc．）は硫酸イオンとの溶解度㪔が著し く小さいため塩として沈殿しやすいのに対して，アルカ リ金属元素（Na，K etc．）は相対的に溶解度が大きく，遠距離まで運ばれ易いためであると考えられる。また Fig． 5 にその一例が示されるように，上流から下流に向けて の同位体滞縮に伴う溶存成分の滞度上昇（しかもそれは

Fig．7．Plot of cation and Cl^{-}abundances against $d^{18} \mathrm{O}$ for Aqsu river samples．

リニアでない）が観察される。これは上流から下流へ向 けての蒸発の効果がまず考えられる。また，㴆度上昇か リニアでないことについては，下流側に行くほど顕著に なると推測される。表庿堆䖽物との相互作用の影響か加味された結果と考えられる。しかし詳細に見ると，各流域は互いに異なった化学的特徴を有することがわかる。

〈各流域の化学的特徽〉
ヶリヤ河に於いては，前節に述べたように下流側に向 けての元素澴縮と同位体渋縮の傾向が，きれいに観測さ れる．これはこの水系か，他の河川と比較してやや単純 で，あまり複雑な合流，分流かないためであると考えら れる（Fig．6）

一方，アクス河では上記の一般的傾向か観察される か，各元素ごとの下流域へ向けての浩縮の度合が異なる （Fig．7）．特に Na^{+}の変化が非常に大きく，陰イオンの Cl^{-}もそれに追随している。これは一つには，ヶリャ下流域で合流する台蔄河か，塩類を堆積した地域を通って来ているため，大颗の Na^{+}や Cl^{-}を溶かしこんでいる ことが挙げられる。あるいは，アクス周辺はかなり大規模なオアシス地域で，人間活動が盛んであるため，その人間活坵の影響を受けている可能性もある。

ヨロンカシ河においてはこれまで述べたのと異なる元索浩度分布か認められ，上流から下流へ向けての浪度変化が（同位体変動も）不規則である（Fig．8）。これは，前項で同位体について述べたと同様な試料採取時期のず れによる集水域の変動によるものと思われる。即ち，下流側で試料を採取した時期は，まだ飠崙山脈のかなり舆域の広い地域を集水域としていたのに対し，後で（約 1週間後）上流側の試料を採取した際は山間部は冬季には いりかけており，水源に著しい変化をきたした，つまり より平野部に近い場所に水願が移動したものと推測され る．和田周辺の地質図によると，ヨロンカシ河の流域の

Fig．8．Plot of cation abundances against $d^{18} \mathrm{O}$ for Yurungqashi river sampls．

Fig．9．The distribution of Sr isotopic composition in river water samples in the Tarim Basin．

一部にかなり広い石灰岩帯があり，水源の変動によりこ の地域の物質（石灰岩）との相互作用の影䙹が相対的に強くなった結果，特に Ca^{2+} の䍚度に変助をきたしたと考えることができる。このように，化学組成と，前述の同位体組成の結果は非常に調和的であるといえる，ま た，このヨロンカシ河は，やはり上流域の地質，地球化学的環境を反映して季節により水質を変動させている可能性が強い。

〈河川水の溶存 Sr 同位体組成〉

各河川の流域の地質，地球化学的現境の影響は，Fig． 9 に示される各河川水の溶存 Sr 同位体組成にも顕著に現われている。一般に惑星物質の Sr 同位体組成 ${ }^{87} \mathrm{Sr} /$ ${ }^{86} \mathrm{Sr}$ ）はその物質の形成年代，化学組成（特に ${ }^{87} \mathrm{Sr}$ の親核種となる Rb の相対存在度），起源物質（地殻物質を起獂とするか，あるいはマントル深部よりの物質を起源と するかなど）により変動する。したかって，どのような物質と相互作用したかに応じて河川水中の溶存 Sr 同位体組成が変動する。源流域にかなり古い花崗岩，変成岩帯を有するヨロンカシ河の溶存 Sr 同位体組成はかなり高く，反対に相対的に若い時代の堆積莌あるいは火山岩 を有する地域より流れてくるアクス河のそれは低い。こ のように，各河川中の溶存 Sr 同位体組成がそれぞれの集水域の地球化学的環境を反映するという事実は予想さ

れたこととは言え，水，あるいは，堆移する塩，土塿の起源を追及するうえで有用な手法となることが期待され る。

4．ま と め

過去2年間の調査から，タクラマカン砂漠地域におけ る天然水の同位体比は，河川水，湖沼水，降水ともに， かなりよく自然㞼境に呼応した振舞いを行なっているこ とがわかった。

それらの変動の幅は，時間的にも空間的にも十分大き なものであることが認められ，今後の嫄境変動の追跡に有効であることかわかった。

この地域は確かに内陸度の高い大陸的な嫄境下にある けれども，チベット高原という地球的規模で大気現象を支配している地域に隣接している。タクラマカン砂漠地域の水文瓄境に，この様な地球的なスケールの現象がど の様に現われているかを，水循環の視点から明らかにす ることが今後の課題として考えられる。
天然水の同位体比は水徨珧における水のそれぞれのス テージを示すものであるから，タクラマカン砂漠地域の同位体水文学を進めていくことによって地域的な瓄境に対する理解を深めていくだけでなく，地球的な環境に対

する理解も得られるものと思われる。
また，地表水の溶存化学成分および溶存成分の同位体

引用文献

比は，各河川の集水域や流域の地球化学的現境を顕著に反映していることが判明した。すなわち，地表水の溶存成分の解析により，その地域の䍗境の理解だけでなく，前記の酸素，水索の同位体組成と組み合わせることによ り，さらに詳しく対象域の水文䍗境を把握し，あわせて様々な物質（水，土壌，塩）の循環に関する情報をあた えうるものと考えられる。

謝 辞

本研究は，平成 2 年庭および 3 年度科学技術庁振興調整然「砂漠化機欇の解明に関する国際共同研究」の一嫄として行なわ れたものである．また同位体の分析に当たっては，岡山大学附属地球内部研究センターの日下部 実氏と三录マテリアル中央研究所の上田 晃氏の協力を得ることができた．ここに感謝する次第である。

中国科学院闌州冰川凁土研究所（1988）：「中国冰川概碖」中国地理学専者药，科学出版社，北京．
林 端芬•術 克動•王 志祥•周 秀坛－李 宋健•汪 文先（1987）：新谓維布泊地区天然水的同位案組成研究．羅布泊科学考察与研究，科学出版社，北京，211－217．
杉本㪟子（1988）：チペット高原，西コンロン地域における水蒸気と降水の安定同位体組成の研究。岡山大学附屈地球内部研究センター共同利用研究成果報告。
Craig，H．（1961）：Isotopic variation in meteoric waters．Sci－ ence，133：1702－1703．
Dansgard．W．（1964）：Stable isotopes in precipitation． Tellus，16：436－468．
Fushimi，H．，Kamiyama，K．，Аокi，Y．，Zheng，B．，Jiao，K．and Li， Sh．（1989）：Preliminary study on water quality of lakes and river son the Xizang（Tibet）Plateau．Bull．Glacier Res．，7： 129－137．
IAEA（1981）：Stable isotope hydrology：Deuterium and Oxygen－ 18 in the water cycle．Tech．Rep．Ser．，No．210，IAEA， Vienna．
Wushiki，H．（1981）：Some characteristics of stable isotope content in the Himalayan waters．Geological and ecologi－ cal studies of Qinghai－Xizang plateau，II．Proc．Symp．on Qinghai－Xizang（Tibet）Plateau（Beijing，China）：1671－1676．

Isotopic and Chemical Characteristics of the Water Samples from the Taklimakan Desert

Kazuya Takahashi＊，Jing Zhang＊＊，Zi Wei Huang＊＊＊，Jiang Min Xiong＊＊＊， Haruta Murayama ${ }^{* * * *}$ ，Chun Yu Han＊＊＊＊＊，Akimasa Masuda ${ }^{* * * * * *}$ and Hisao Wushiкi＊

The studies of isotopes in ground water，underground water and meteoric water using ${ }^{2} \mathrm{H}(D)$ and ${ }^{18} \mathrm{O}$ should provide us significant insight into the origin and the circulation of water in the arid area．The main purpose of this study is to research the hydrologic environment in the Xinjiang province，especially Tarim Basin area．During the two field work seasons；in 1990 and 1991，water samples were collected for the isotope analyses and chemical analyses．Three occurrence forms of water were categorized；river water，lake water and precipitational water．Analytical results were discussed accordingly．a）River water：Regional distribution range of the isotopic ratios was found at the highest level in Khotan and Charchan regions，spanning $-66.8 \sim-46.7 \%$ in δD ．Aksu region fell on the second and Kashgar region on the lowest level，$-79.1 \sim$ -72.7% and $-88.7 \sim-78.3 \%$ ，respectively．$\delta^{18} \mathrm{O}$ vs．δD diagram indicated higher desiccation condition along Charchan River and Akusu River than the other river courses concerned in this report．b）Lake water：Lake water samples were collected in the peripherial high altitude areas of the Tarim Basin．They depicted large

[^3]diversity of isotopic ratio characterising the localities. In the Kokoshil Mountain region, the head of Charchan River, the isotopic ratios of the original precipitation on the lake was estimated to be -3.1% for $\delta^{18} \mathrm{O}$ and -14.8% for δD. c) Rain water: In the winter seasons of 1990 and 1991,8 samples were collected at Chira in Khotan region. Winter precipitations appeared at the greately different isotopic level from the local river waters. They indicated a strong affiliation to the western atmospheric circulation which provides most of the annual precipitation in winter in the western neighbour regions of the Basin. On the contrary, the major source of the river water was suggested to be the summer precipitations up on the mountain area.

On the other hand, we also performed a geochemical isotopical (Sr isotopes) studies for river water samples from the Taklimakan Desert to understand the resources and transportaion of water around the Tarim Basin. The water samples studied here were collected chiefly from three rivers, those are Keriya, Yurungqashi and Aqsu Rivers. Generally speaking, the rivers in the Taklimakan Desert area are richer in soluble ions, especially in Na^{+}and Cl^{-}than the rivers in Japan, while the abundances of Mg^{2+} and Ca^{2+} are lower than those of K^{+}and Na^{+}. Moreover, alkaline earths $\left(\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Sr}^{2+}\right.$), alkalis $\left(\mathrm{K}^{+}, \mathrm{Na}^{+}\right)$and the anios $\left(\mathrm{Cl}^{-}, \mathrm{SR}_{4}^{2-}\right)$ show wide variety in concentration for these rivers, and their concentrations in an individual river increase as it flows from the upper to the lower reaches. The differences of chemical compositions among these rivers should reflect the geochemical environments, (compositions of soil and rocks along the water ways), around each river. The strontium isotopic compostions of the river water samples also distribute in wide range in the southern and northern parts of the Tarim Basin. Generally, the river water in the southern regions of the Tarim Basin show higher ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ than those in the northern areas. These results seem to come from the different geological settings between southern (Kulun Mt. Range) and northern terrains (Tianshan Mt. Range), lying around the upper reaches of those rivers. These observations suggest that the chemical characteristics of water samples will give us important information concerning not only the transportation of water in desert area, but also surrounding surfical material and the geochemical (and ecological) environments of the watershed.

Key words: Isotope, Hydrology, Water movement, Geochemistry

商品経済化にとあなうソマリのラクダ遊牧と紛争

池 谷 和 信＊

1．はじめに

東アフリカの牧畜社会の特徵として，（1）食生活を畜産物に依存する割合がきわめて高いこと，（2）家音は市場で売却されるよりも，社会的交換財としてみなされている こと，（3）家音には供貔従や情緒的自己同一化の対象物と して文化的価値の付与がなされていることが挙げられて いる（佐藤，1984）．しかし，近年のヶニア国内では商品経済の急速な浸透にともない，牧畜社会の人々も带産物 を主体とした食生活に変化した事例も多く，またウシ， ヤギ・ヒッジが周辺地域からナイロビの家畜市場に運搬 されるようになったため，辺境の牧畜地域も，あはや国民経済の一部として組み込まれているのが現状である （池谷，1993b）。
一方，東アフリカの牧畜社会の研究では，とりわけ他民族社会との紛争の事例が報告されてきた（Evans－ Pritchard，1940；Tornay，1979；福井，1984；松田， 1991）．しかし，どのような世帯がいかなるプロセスを へて紛争を起こすのか，さらにはその要因は何かに関し ては，詳しい分析はなされていない。

本研究では，ケニア北東部に住むソマリとオルマとの間に紛争が生まれた過程を動態的にとらえ，その要因を分析することを目的とする。その際に，ガリッサ（Gari ssa）におけるラクタの乳の需要が增大し，ナイロビ市場 に向けてウシ，ヤギ・ヒッジが揿出されるという商品経済化にともなう牧畜経济の変化が，民族間の紛争の要因 につながっているのではないかという視点を留入する。

ソマリ（Somali）は，「アフリカの角」と呼ばれる東ア フリカのソマリア，ジプチ，エチオピア東部，ヶニア北東部などの半乾燥地帯に住み，東クシ系のソマリ語を使用する。近年，ソマリア国内は内戦によって舞政府状態 となり，ケニア国内にてシフター（武装した盗賊団）p レフュジーになる人が数多く生まれている。

ソマリの人口総数は約数百万人を示し，その大部分は イスラーム教徒である。彼らはラクダやウシを中心に飼普する牧畜を営むほかに，家畜の売買あるいは家畜や物資の運搬業に従事する人も多い。また東クシ系の人々の あいだでは，家畜の法的所有権は家長にあり，敳格な長子相統制度やクラン体系が守られているが（佐藤，

1984），ソマリは例外で，分節リネージ体系が発達して いる。

ソマリ社会は，北部ソマリアをフィールドにしたI．M． LEWIS（1961）の社会人類学的研究によって，分節リネー ジ体系を持つ父系出自集団を基礎として組織化された社会を持ち，年㦴体系がみられない社会粠造でよく知られ ている．その後の研究としては，ソマリア国内でのラク夕牧畜が商品経済に組み込まれていく1950年代を中心 にとらえた社会経済史的研究（SWIFT，1979），ラクタの管理方法の研究（HuSSEIN，1990），あるいは現在のラクダ生産を中心とする牧畜経済と流通の研究（SAMANTAR and Mohamud，1988；Herren，1990；Samantar，1991； ELMi，1991）などで指摘されるような国の基幹産業であ る牧畜を対象にした経済学者の一連の報告がみられる。

一方，ケニアの北東州におけるソマリを対象としたも のは，N．H．Merryman（1984）が早魅の影䇾を受けてか リッサタウンに移住したソマリの女性の行商や世帯内の労働分業を取り上げ，J．L．Merryman（1987）が内戦や干魃による経済的影簗などを扱う研究を行なっている。 また，Dalleo（1975）は，1892年から1948年までのソ マリの交易を中心とする経済的変選を報告している。し かし，以上の成果からは，この地域のソマリの移動形雍 や家畜管理の方法などについてはまだ充分に知ることは できない。
筆者は，ケニア共和国北東州ガリッサ地区に調査地を設けて（図1），1991年5月，10月，1992年1月，2月，3月と通算5回，のベ1カ月にわたりソマリ族のリ ネージの一つであるアブタラー（Abdalla）のキャンプに住み込み，人と家畜との関係の钼察と聞き取りを行なっ た．また，乾燥地域に広くみられる旱魃によって，隣接民族であるオルマに帰屈すると認知されているテリト リーにソマリが家畜群を移罒させざるを得なくなり，そ の結果，民族間の紛争が起きている状況を事件の直後に聞きとることができた。本稿では，まず移娌牧畜の実態 を記载した後に，それによってもたらされる民族間の紛争状況を把握する。

2．調查地の概観

ソマリが飼篗しているヒトコブラ゙クタ（dromedary

[^4]（受付：1992年10月26日，受理：1993年10月16日）

図1．調查地の位置．
斜線はソマリの分布域を示す。
camel）は，アフガニスタンやアラビア半島の諸国から北アフリカや西アフリカのサヘル・サハラ地方，東アフ リカの乾燥•半乾燥地域に主として分布する（HJORT and DAhL，1984）．本稿の調査は，その分布の南端に当 たるケニア国内の北東部で実施している（図1），ソマリ は，アラブのベドウィンやサハラのトゥアレグなどとは異なり，他のクシ系の牧畜民ベジャやレンディーレなど とは同様に，乗用としてはラクダを利用しない。ラクダ はむしろ駄用と乳用を中心として，時には食肉用として利用される。

1）地理的背景

ケニアの北東州は平坦地がつづき，高さ数メートルか ら2メートルの灌木に広く覆われている。州の西端の夕 ナ川沿いのみには，幅 $4 \sim 5 \mathrm{~km}$ にわたって樹高 $10 \sim 15$ m の河辺林が発達しており，そこにはキリン，シマウ マ，ダチョウなどの野生動物が生息している。キリンと ラクダがアカシアの葉を食用にして共存する地域として は，世界的にあ珍しい所である。
乾燥地域の降雨は，年変動がはげしい点が特性として挙げられる。1983年から1987年までのガリッサタウ ンでの年降水量は， $117.1 \mathrm{~mm}, 618.3 \mathrm{~mm}, 151.0 \mathrm{~mm}$ ， $226.9 \mathrm{~mm}, 177.7 \mathrm{~mm}$ と，年による変動が大きい（RE－ public of Kenya，1988，p．1）．そして 1991 年の年降水

図2．ガリッサにおける月別降水量． （ヶニア気象庁の観測データより）

量は， 311.4 mm を示す。また各月別の降水量（図2）で は，4月が最大で 12 月が次につづき，1991年では 3月， 7 月も多い。1991年の最高気温は 2 月に $39.3^{\circ} \mathrm{C}$ ，最低気温は 6 月に $20.3^{\circ} \mathrm{C}$ となっている

2）歴史と分布形態

北東州の住民の大部分を占めるソマリは，エチオピア東部のオガデン地域からソマリア南部を通過してケニア北東部に移住してきた人々である（MERRYMAN，J．L．， 1987）．彼らは1900年前後にメネリク二世によるェチオ ピア帝国の成立の際に，オガデン地域において家畜を奪 われたり戦争捕虏になったりして大きな打撃を受けてい る．北東州内には，デゴディア（Degodia），アウリハン （Aulihan），アブドゥワク（Abdwak），アブダラー（Abdal－ lah）などのソマリの各リネージがおおよそ住み分けに よって分布し，さらに，宗教心の強いといわれるアシュ ラフ（Ashraf）が各リネージの中に点在する。
北東州のソマリは，北から南にかけて，ガレー （Gurreh），ボラン（Boran），オルマ（Orma）などの，同じ クシ系のウシを中心に飼養する牧畜民の居住域に接して分布している。

北東州ガリッサ地区の西側と海岸州タナリバー地区と の境界を流れるタナ川沿いには（図1），従来ガリッサタ ウンやブラ（Bura）村の他には商品用のバナナを生産す るバンッー系のポコモ（Pokomo）の農村を例外として，定住集落は存在しなかった。1980年頃になるとヶニア政府による定住化政策が浸透して，小学校や診療所が 10 年前にコロコラ（Korokora）村とナニギ（Nanigi）村，

図 3．Aden Hiloue キャンプを栍成する人々の家系図。
（ ）内は調査時における年齢を示す．大は前夫の死後の婚姻を示す．破線内は他のキャンプに別住する．

図 4．Aden Hiloue キャンプ，図5中D地点での キャンブの模式図．

3 年前にクムせ（Kamuthe）村の 3 村落に建設された。現在これらの村は，遊動生活をしていたソマリの一部が道路の両側に家を建設して定住した結果，集村の詈観を呈するようになった。その一方でタナ川の右岸にあたる土地は，ソマリの地域認識では，オルマのテリトリーと なっている。

1979年のセンサスによると，北東州ガリッサ地区に は12万8千人の人々が 4 万 4 千 km^{2} のェリアに生活 しており，人口密度は約 3 人 $/ \mathrm{km}^{2}$ である（ReRPUBLIC of Kenya，1990）．その後 1988 年の人口総数は約 22 万人，人口密度約 5 人 $/ \mathrm{km}^{2}$ となるなど，およそ 10 年の間に大福に増加している（Rerpublic of Kenya，1988）。 このうち牧畜民は約 8 万人を占め，全就業者の 81% が移動牧畜に従事している。

ガリッサ地区内での地域的差異をみると，南部はアフ タラーのウシ飼篒，北部はアウリハンのラクダ飼養，夕 ウンの近郊の中央部ではアブドゥワクのゥシとラクダの混合飼変が卓越するといわれている（MERRYMAN，N．H．， 1984；Merryman，J．L．，1987）．しかし筆者が主なる対象 にしたアプタラーは，当地域の中央部にラクタの飼效が

中心で生活する。これは，Merryman 夫妻によって指摘 された中央部の地域特性に適合しないので，近年の諸変化によって分布状況に変化が生じたのか否かの検討が必要とされる。

3．ソマリの遊牧生活

1）家族樌成とキャンプの空間䔩成

ソマリが遊動するときの単位となるキャンプ集団は，一夫多妻の夫婦とその子供たちから成り立っている（図 3）。子供の年㖑をみると 2 歲避いの子供の数が多く，1年おきに子供を出産する彼らの伝統的な家族計画が反映 しているように思われる。また，放牧労卸のために㕍わ れる男性が外部からキャンプに移り住むことがあり，兄 の死後に，弟が兄の妻と結婚する事例がしばしばみられ る。
図 4 は，1992年1月に図5中のD地点にすべての構成員と家畜がかれ川の近くに集まった時の，キャンプの空間構成を示す。タナ川沿いに自生するヤシの葉と草で おおわれているドーム型の 5 軒の家屋の他に，木の妌で できたラクタ，ウシ，ヤギ・ヒツジの家畜囲いが一カ所 ずつみられる，ラクタの場合は，ラクダ囲いの中に仔ラ クダが入れられる一画があり，ヤギの場合は，所有別に二つに分けられた仔ヤギの囲いが，ヤギ・ヒツジの成瞁 の混群の目いとは別に設けられている。

ソマリの居住様式は，家族が住みヤギ・ヒツジか管理 される集落と，ラクダ放牧の為のキャンプ，という二分 した居住形態が従来指摘されてきた（佐藤，1984），し かし，家畜キャンプの中にはウシのキャンブをつけ加え る必要があり，ヤギ・ヒツジの混群やラクダ群が，キャ ンプと集落とに分散して置かれることもある。

表1．各キャンプの家畜頭数．

リネージ名			アプダラー			アブドゥワク
	キャンプ名		Dubou	Aden Hiloue	Aden Ali	Lathan
家畜の種類	ラ	ク 夕	42 （2）	約 60 （4）	40 （4）	約 30（？）
	ウ	シ	2	20	0	約 200
	ヤギ・ヒツジ		約 350	約 250	約 250	約 300
	口	バ	0	0	1	？

（）は，駄用ラクダの頭数を示す。

図 5．遊牧ソマリの移動パターンと紛争の発生地点（1991年5月～1992年3月）．
○：Aden Hiloue キャンプ，○：Aden Ali キャンプ，A：Dubou キャンプ，＊町や村落， \times ：紛争事件の発生地点． $1 \sim 6$ は本文中の（1）～（6）の事例に対応する。

2）家畜群の構成と混合牧畜の管理技術

N．H．Merryman（1984）は，ガリッサ地区の中心部に おいて，アブドゥワクが9割，アウリハンが 1 割からな る 57 世帯の牧民のサンプル調査から，駄用ラクダを除 くラク夕を持たない世帯が 20 例あると報告している。䇥者が家畜群の謿成を調べた牧民の 4 世帯は，アプタ ラーが3でアブドゥワクが1からなり，すべての世帯が駄用•泌乳ラクダを所有していた。

家畜の構成は，一世帯当たりラクタ30～60頭，ウシ $0 \sim 200$ 頭，ヤギ・ヒツジ 250～350頭，ロバ $0 \sim 1$ 頭を示す（表 1）．Dubou や Aden Hiloue はラクタ，ヤギ・ ヒツジを古くから飼郞していたが，近年ゥシを導入した のに対して，Lathan は伝統的に，ウシを中心に詞敄し てきた。この二つの違いは，ガリッサ地区の場合では前者がラクダ飼篒が中心的なアブダラーに，後者がウシ飼食か中心的なアブドゥワクにほぼ対応しているように， リネージの違いか反映している。
北東州のソマリのラクタは，背中の高さが約 2 m を超

図 6．Dubou キャンプのラクタ群の性•年齢別機成．
－ 1 頭，$\bigcirc=1991$ 年 10 月に新規䩗入 （42頭のラクタの中で 1 頭のみ年齢不詳）

え，レンディーレやガブラのラクタ，また北部ソマリア やジプチのあのと比べて大型である。また，ラクタの性成熟は 3 歳であるが，一般には 4 歳になって繁殖供用を開始し，繁殖寿命は 20 歳以上にも及び，ヒトコブラク夕では妊娠期間は11カ月を費やす（畜産大事典編集委員会，1978，p．1338）。

ラクタ群の性および年齢別椎成をみると（図6），オス ラクダは駄用に使われる 10 歳， 11 歳と種オスの 11 歳 に数例みられ，6～9歳のオスはまったく存在せず， 5 歳以下のオスでは 3 歳が多いのがわかる。 メスラクタは 2歳以上11歳迄のすべての年齢にみられるが，7歳のも のが 7 頭と多い。また，1991年10月に1頭当たり約 500 Ksh （1991年現在，1 Ksh は約 4.5 円に相当）する 7 頭のヤギを販売することで，1頭当たり3，500～4，000 Kshの 4 歳のメスラクダを購入している。これは， 4 歳 のメスラク夕が1頭しかいないために，彼が将来のラク夕群の權成を考えて繁殖用のメスラクダを補充している あのと思われる。

表2はラクダやゥシの所有者と入手方法を示す。ラク夕の所有者は Dubou とその家族からなり，ゥシはすべ て Dubou の所有である．入手方法では， 2 頭のウシは 2年前と 4 年前に，駄用ラクダは $7 \sim 8$ 年前にラクダが 3歳のときに，カリッサタウンの家畜市で購入されてい る．大部分のラクタは父からの相続や䁬与によって，家族の成員に別々に所有されている。

ソマリはラクダやゥシに対しては，青年や子供などの男性の牧夫をそれぞれ使い，ヤギ・ヒツジの混群に対し ては女性も動員する。
同じラクダでも泌乳ラクタ（Milking Camel），種オス ラクタ，仔ラクタは男性によって管理され，駄用ラクダ は女性によって管理される。
駄用ラクダは，夜中じゅう両足をロープで木にしばり つけられていて，キャンプ内におかれるか，人工溜池や

表 2．Dubou キャンプのラクタ，ウシの所有者と入手方法．

			家畜の呼称	所	有 者		入 手	法
			Hamar		Dubou	父親から相続		
			Borey		Siyad		父親から贈与	
			Garafa		Farah		父親から相続	
ラ		夕	Elai				義父から贈与	
フ	$ク$	夕	Afjir		Yussuf		父親から䁬与	
			Daarey		Hussein，Osman		$?$	
			Gaff		Dubou		？	
			Filey		Bilai		？	
ウ		シ	Abai		Dubou	1989年に，ガリッサの市で購入		
			Waras		Dubon	1987年に，	に，ガリッサの市で購入	

図 7．Dubou キャンプのラクタの血縁関係。
（ ）内は調査時における年齢を示す。ラクダ群は（1）～（6），（7）～（8）からなる二っに分離される．+ ：泌乳 ラクタ，ス：種オスラクタ（（4）の中のみ），／死亡，ア）2歳の仔ラクダの体が弱いので䆜乳されない。
イ）死亡した仔ラクダの毛皮が搾乳の際に使われている。

タナ川などへの1～2日おきの水くみの際には，荷役用 に使われる。日中はキャンプの近くで牧夫の付随なしに採食する。

ウシャャギ・ヒッジは，一般的には午前7時より午後 6 時まで放牧される一方で，ラクタの日㷌り放牧は 8 歳 から 16 歳にかけての若者の男性か，午前 8 時から午後 9 時まで実施する。放牧に出発する前には，四つのうち二つの乳首にロープがしばりつけられる。これによっ て，仔ラクダが放牧中に母ラクダの乳を飲み尽くさない ようにする．放牧の途中でも，牧夫が乳を利用できるわ

けである（池谷，1993c）．ラクタは樹高 2 m までの灌木 の葉を採食するので，タナ川より $6 \sim 7 \mathrm{~km}$ 離れた灌木地帯か放牧地となっている．1～2頭のラクタの首に木製の鉿がつり下がっているので，離れた所からでも牧夫 はラクタの存在を確認できる。同じクシ系のレンディー レはラクダに $10 \sim 15$ 日に 1 回の割合で給水するといわ れるか（佐藤，1984），ガリッサのソマリはタナ川を利用する場合に，2日に1回の割でラクダに水をやってい る。

めに，ラク夕囲いの一角に集められる。翌朝，6時から7時までの間に仔ラクダが1頭ずつ外へ出された後に，親 ラクタの搾乳がなされる。二人の男性が同時に 1 個の容器を使って 1 頭のラクタから約 500 ml のミルクをしぼ り，11頭のラクダからのべ約61のミルクを集める。

3）キャンプの移動形㤠と集団の分裂•展合

筆者が移動形態を調査した三世帯は，約10年前に政府によって建設された学校や診療所のあるコロコラ村の周辺部を短距離移動する Dubou キャンプ，ガリッサタ ウンからブラ村までの約 80 km の軼囲の中で長距離移動をする Aden Hiloue キャンプ，そして約 30 km ほど の中距離移動をした Aden Ali キャンプとに分かれる （図5）。

移動ルートでは，キャンプの位置がタナ川より觹れる ことはなく，ガリッサやナニギやブラに乳を供給する集乳圈内におさまっていることが明らかになった。図5の A では人工溜池， B ではタナ川の支流となるワジの川底 を数メートルにわたって掘る井戸，C～F ではタナ川の水というように，各時期で異なる水源か利用されていた が，移動のルートは水源の位㒹とともにミルクの販売先 となる村や町に近接している必要性にも規定されていた と考えられる．また Aden Ali キャンプの事例のように， すべての人々か家畜とともにタナ川の対岸へ移動するも のと，Aden Hiloue キャンプの事例のようにゥシキャン プと一部の背年のみが対岸へ移動するもの，Dubou キャンプのようにタナ川の右岸へ移動しないものの三つ のタイプがみられる（図5）。

短距離移動する Dubou キャンプは，年長者が足を痛 めているので移動がしにくいこと，コロコラ村にて女性 かミルクの仲買に従事するために集落の近くにいる必要 があることによって，定住村落の周辺部を移動してい た。長距離移動をするAden Hiloue キャンブでは，A 地点からB地点への移動は（図5），水源としていた人工溜池の水の枯渇によっていた。 D からEそして F_{1} へはラ クタの放牧地を求めて移動している。しかし， F_{2} から G_{1} への数 +m の距離の移動要因は明らかではない。 Aden Ali キャンブでは，3月初めにラクタの放牧地が なくなりタナ川の右岸へ移動している。

移動の際に，人間集団とラクタ，ゥシ，ヤギ・ヒッジ の三つの家畜キャンプとの組み合わせが，時に分離した りあるいは集合したりする状況が常にみられる。例えば AからBへは，数頭の泌乳ラクダと駄用ラクダ以外のす べてのラクダを独立したキャンプに移動させておいた後 に，人々は合流する。その後，BからEまでは人と家畜 が合流していたが，1992年1月にウシキャンプのみが

別れる。そして同年2月に 2 から F_{1} ， E から F_{2} へと キャンブの成員を二つの集団に分け，家畜群もラクダ キャンプとウシ，ヤギ・ヒッジキャンプとに分離して移動する。 さらに，同年3月 F_{2} においてゥシさャンブの みが再び分裂するが（図5），次章で述べる紛争の被害を受けそこねて G へ へひきかえす。

一方，Dubou キ＋ンプでは，販売用のミルクをとる必乳ラクダを村の近くの集落（コロコラ村）におく一方で， ラクタ群の放牧地となるプラ村落の近くにラクタ・ヤギ キャンプをつくった。その際には，ラクダ群内の血縁関係が考感されている（図7），すなわち， 2 頭の駄用ラク夕を含む10頭のラクタ（図7の家系（7）と（8））は集落 で飼度され，その他の 32 頭のラクダ（家系（1）～（6））は ラクタ・ヤギキャンブにおかれた。
8 組のラクダの血緑関係をみると（図7），各々の組の成員は，祖先に当たるメスラクタの名前で呼ばれてい る．また Borey，Daarey の組を除いて，各組には必ず 1 ～3頭の泌乳ラクタを含んでいる。種オスは，Elai の組 のなかに 1 頭のみみられる，ソマリは，キャンプの移動 の際にラクタの血縁関係を考風して，二つの群に泌乳ラ クダが含まれるようにしてラクダの群れを分裂させてい る。

4）牧畜以外の生菜

かつて，槍を使ってキリンが捕獲されたこともある が，ケニア政府は野生動物の狩猟を全面的に禁止してい る．農業は実施されていない。牧畜以外の生業としては，近くの集落に向けてのミルクの販売がもっとも重要であ る． 1 ボトル $(500 \mathrm{ml})$ 当たりのミルクの売り値は，集散地となるガリッサタウンでは 12 Ksh （ $1 \mathrm{Ksh}=4.5$ 円），集乳圈内のコロコラ村では 6 Ksh ，クムぜ村では 5 Ksh と，町からの距離が大きくなるにつれて逓減している。 そして，ガリッサまで運ばれることはないナニギ村やブ ラ村では，1 ボトル当たり 5 Ksh で売られている。

ソマリの女性は毎日，もっとも近くの村や町でミルク を販売する． 1 回で $8 ~ 9$ ボトルのミルクが入った容器 を逃搬することができ，クムぜ村やナニギ村の場合， 1回のミルク販売で 40～45 Ksh の現金を獲得しているの が観察された。

各村には10人以上のミルクを瞿入する女性の仲買人 がいて，プッシュの中から逃ばれたミルクは村内の各々 の仲買人の小屋で煮沸される。その後，毎日ガリッサタ ウンからコロコラ，クムゼ村までやってくる車の運送人 が器の大きさによって異なる邁送料をとり，ガリッサま で運ぶ，

こうして得られる現金は，食生活の大部分を占めるト

ウモロコシの粉（ 2 kg の袋 $=16 \mathrm{Ksh}=72$ 円） や毎日 2 $~ 3$ 回は飲まれる紅茶，砂糖などの購入に当てられる。 トゥモロコシの枌は，煮込んだ後にラクタやヤギの乳と混せて食べられる．ウシやヤギ・ヒッジの販売は頻繁に は実施されていないが，町や村に住むソマリの家畜仲介人を通してナイロビ市場に向けられていることが多い。 カリッサタウンにおいて，ウシ市は毎週水曜日に行なわ れる。
要するに彼らの経済生活は，毎日のミルク販売で支え られているといえる。

4．民族間の枌争の状況とその要因

1）紛争の状況

ソマリとオルマとの相互の間にみられる紛争は，開始時期を明らかにできないか，ソマリ側のオルマ側への一方的な侵犯によって生じているため，すべての事件はオ ルマサイトで発生している（図5）紛争の事例を，以下 に時系列にそって簡単に略述する。
（1）1991年6月にナニキ村の対岸において，オルマが 3 人のソマリの少年を殺害した。ウシ放牧のためにソマ リガタナ川を越えてきたことが，その理由になってい る．
（2）1991年9月にブラ村落の対岸において，ソマリが 300 頭のオルマのウシを連れだし，6人のオルマを殺し た。
（3）1992年1月16日にバンガリ（Bangali）において，一人のソマリがオルマに槍で殺される。その後1月21日には，海岸州タナリバー地区バンガリに移住していた多くのソマリが，北西州かリッサ地区にもどる。
（4）1992年1月下旬に Aden Ali の子供 Abudi がタナ川を越えてラクダキャンプ（図5，H 地点）を訪れよう とした途中，木の下にすわっているナイフを持ったおよ そ 30 人のオルマに会った。彼は 7 km にわたってオル マに追われたが，逃げおおせた。
（5）1992年3月中旬，ナニギ村の対岸において， 150頭のソマリのウシをオルマが盗んでいった。 しかしその後を追って行ったりマリが，オルマからウシを取り返し た。
（61992年3月23日午後6時半頃，ナニギ村の対岸 において，オルマによって一人のソマリが統で殺され， 300 頭のウシか盗まれた．そのすぐ近くにウシキャンプ をつくっていた Aden Hiloue は槍とナイフレか武器を持たない自分の身の危険を察し，ウシを連れて引き返し た。
このキャンプからゥシキャンブのみか別れたのは事件

発生から 2 䢙間前のことで，タナ川の対岸では長期間に わたる放牧はしていなかった。しかもゥシは，ここ数年来飼逆している新しい家音であって，充分な水はあるが草の確保には困っていたのである。かれらが，ウシ放牧民のオルマか放牧している地域へ侵入するのも草が枯渇 する乾季の終わりであって，いたしかたないことであっ たようにも思える（池谷，1993c）
筆者は（6）の事件の直後に，事件現場から数 km 北側で はあるがタナ川を渡り，オルマ側のAden Ali キャンプ （図5，H 地点）の状況をかいまみる機会があった。対岸 のソマリの女性は，毎日タナ川を渡り，ガリッサ地区の クムせ村にミルクの眅売に来ていたか，オルマ㑡を歩く ときには，オルマの㛐撃を恐れて必ず統を屏にかついだ 3 人のソマリの男性が䝂犕することになっていた。ま た，同一リネージ内のある範囲の親族関係を持つ人々 が，近接してキャンプ地を設けていた。ソマリが，オル マ側ではオルマの閩撃を恐れているのからうかがえた。ま たこのあたりは1カ月前まで，オルマの人々がウシをつ れて生活していた場所であったという，しかし，この地区にいたオルマは检しかもっておらず，銃を手にしたり マリを恐れて，他の場所へ移動していったのである．ソ マリは，武力を使って放牧地を確保しているのからかが える。
なお1992年3月13日，ブラより 70 km 南のマサラ ＝（Masalani）の対岸において，放牧のためにオルマラ ンドに侵入したソマリとオルマの間に紛争が生じてたく さんのオルマが殺され， 200 頭のウシが盗まれた。この際，二人のソマリも死亡した。
以上の事例から，二つの民族間での相互の紛争は，槍 や銃による殺人の形をとり，多くが200～300頭のウシ の泥捧の形をきっかけにして生じていることが理解され る．しかし盗まれたウシが，放牧群に入れられているの かゥシ市で売られているのかなどの処理の方法は明らか になっていない。

より詳しくみると，（1）の事例では，降雨の少ない 1991年6月にソマリの牛群か放牧のためにタナ川を越 え，オルマか自分たちのテリトリーと認識している地域 に侵入したことによって，オルマによるソマリの殺人が生じたのである。この後，ソマリとオルマとの間に長期 にわたる率争がつづくことになる。
一方，（2）の事例では，オルマのウシをつれだしてオル マを殺したソマリは，オルマ側で放牧していたわけでは ない。これは（1）の事例とは異なり，オルマのウシを盗む ことか目的となっている。
なお（4）～（6）の事例が示すように，1992年3月には降雨が少なく，良質の放牧地を求めて多くのソマリがタナ

図8．ガリッサのゥシ市での年間の取引頭数の変化．（1985～1988年の頭数は Republic of Kenya（1988）， 1991 年のそれは District Livestock Production Officer（1991）に よる）

川を越えてオルマ族のテリトリーへと侵入していった。 その数は，Dubou キャンプの Farah 氏からの聞きとり によると，2月下旬には50世帯以上といわれる．その結果，両者の間で家畜の孪い合いや殺し合いか生じてい る．ソマリの中には Aden Hiloue のように元の場所へ引き返す場合と，Aden Aliを典型例とするように，銃を使って自らの家族を防梆してまでも，その場所にとどま る場合とがみられた。
以上の事例から，どのような世帯がタナ川を越えて略赫の被害にあっているのかをまとめてみよう。第1に は，Aden Hiloue キャンプのように，集落はソマリ領内 に位置するが，ウシの採食地が不足して牛群と牧夫から橉成されるウシキャンプのみがオルマ領内に移動した場合が挙げられる．第2には，Aden Ali キャンプのよう に，最初はラクダ群と牧夫のみがオルマ領内に移住して いたが，その後にその他の家畜や梅成員がそこで合流す る場合がある（図5）．本稿では社会的ネットワークに関 する充分な分析ができなかったが，ある範囲の親族関係 がきいて，何世帯かがまとまって移動している。

第3に，上記の事例にみられない Dubou キャンプは タナ川をまったく越えていない。これはウシの頭数がわ ずか2頭で，ゥシの放牧が行なわれていないこと，ラク夕群をコロコラ村とブラ村の近くとに分散飼育している ことが関与していると考えられる。

2）䡆争の要因分析

図8は，ガリッサのウシ市における年間の取引頭数の変化を示している。取引頭数は1985年から1988年ま では増加し，その後の 3 年間に 2 倍以上に急上昇してい

る．これは，主としてナイロビに運ばれていることから， ナイロビのウシ市場の拡大と大きく結びついていること がわかる（池谷，1993b）。

こうしてソマリの中には，ナイロビ市場へ運搬される ため家畜市で高価なウシの飼斏を始めているものかい る．このように，ラクタタ心のソマリがシを飼笭する ようになったことも，略孪の被害にあう一因となってい るのであろう．Aden Hiloue キャンプで飼篒される 20頭のゥシの入手時期は過去10年ぐらいの最近という が，具体的な年時は明らかではない。しかし，Dubou が所有する2頭のゥシは，第3章－2）で述べたように，それ ぞれ1987年と1989年にガリッサの市で購入されてい る（表2），さらに，ウシの傇となる草はソマリ側には多 くはないので，Aden Ali キャンプの事例のように 20 頭 のウシを放牧するためには，乾季の終わりの 3 月に降雨 が少ないことも影掣して，オルマ側の放牧地へ行かざる を得ないのである。その結果，オルマとの間に紛争が生 ずることにもなる。

また1981年頃にコロコラ村とナニギ村，1988年頃 にクムぜ村が建設された。このように，ガリッサを中心 としてミルク流通のネットワークが形成されたのは 1981年以降のことである。そのためキャンプやラクダ群がタナ川沿いから離れることができず，ガリッサタウ ンの集乳図内に集まっていることが，（植生調査によっ て実証しているわけではないから）えさの枯渴の状況を生 みだすことにつながっているのではないかと思われる。 ラクタやウシの乳が商品となっているために，定住村の付近では，常にラクタやウシが詞馀されているのであ る．このような理由でソマリはタナ川を渡り，オルマ側 の放牧地へ移動した後も，乳の販売を実施している。
以上のことから，ソマリとオルマの紛争は，事例（2）の ように計画的に実施された略奔例もあるか，ソマリのオ ルマ側への移動がきっかけとした放牧地をめぐる竸合が要因となって生じていることが多いことがわかる。つま り，ミルクの販売の増加と牛飼郞の增加という商品経済 の浸透にともなう牧畜経済の変化によって，彼らはラク夕やウシを生存させるためにオルマ側へ侵入せざるをえ ない状況におかれ，殺人までも生じ民族間の紛争をひき おこすようになったと結論づけられよう。

5．結 踚

本稿では，乾燥地域に広くみられる降雨特性の中での ソマリ遊牧の実態と，ソマリとオルマ間における紛争の状況の把握とその要因を解明することを目的とした。そ の結果，以下の 3 点が明らかになった。
（1）本地域のソマリは，約 10 年前に建設された学校 や診療所のある定住村落の周辺部を移助するソマリと， ガリッサタウンからブラ村までの約 80 km の範囲の中 で移動をくり返すソマリとに二分される。移動ルート は，キャンプの位置が水䃇となるタナ川やミルクの販売先となる町や村から離れることは少なく，放牧地を求め て，本拠地と家畜キャンプが分離したり集合している。
家畜の橉成は，1世帯当たりラクタ30～60頭，ウシ 0 ～200頭，ヤギ・ヒツジ 250～350頭となっている．ソ マリは青年戸子供などの牧夫を使って，それぞれの家畜群を放牧することで，各家畜の食性に応じた植生が垂直的に利用されている。
牧畜以外の生業としては，近くの村落における乳の販売が挙げられる。そこで得られる現金は，食生活の大部分を占める殻物や紅茶，砂糖などの積入に当てられる。
ウシャャギ・ヒッジの販売はひんぱんには実施されてい ないが，ソマリの家畜商人を通してナイロビ市場に向け られている．
（2）ソマリのオルマ側への侵入は， 20 頭のゥシで キャンブをつくるとき，ラクタ飼育のみに特化するとき にみられ，半定住（semi－nomadic）のキャンプではラク夕群を分散，飼育することで，ソマリ側にとどまってい る．そのブロセスはラクタキャンプのみか移動した後に家族か合流する手順か，ウシキャンブのみか移動する場合がある。この場合の移動は，殺人や家畜の盗みが目的 ではない。しかし，その結果，両者の間で家畜の孪い合 いや人間の殺し合いが生じている。ソマリの中には元の場所へ引き返す場合と，銃を使って防衛して居残る場合 とがみられた。
（3）降雨かないことによるラクダの陬となる㺃木の葉の不足や，ラクダの乳が商品となるために町や村から ラクタ群を引き離せないことによって，ソマリはオルマ側のオルマランドへ行かざるを得ないのである。また， ラクタよりウシの方が商品としての価値が高いために， ウシを鉰篒し始めるソマリが多い。しかし，ソマリの土地にはウシの鉺となる草地が不足しがちであり，オルマ が利用している放牧地への侵入により，両者の間に放牧地をめぐる闘争が起きて，紛争が生じる原因となってい る．つまり，近年のミルクの販売の增加とウシ飼㒄の増加やゥシの商品化にみられる商品経済の浸透が，ソマリ側でのラクタの過放牧とウシの家畜数の増加をもたら し，民族間の紛争を生み出す原因の一つになっている。
ソマリとオルマとの間の紛争は，ウシを㚐うことを目的とする計画的な略孪と，家畜の盗みが目的ではなく，全面的に家畜との共存生活をする遊牧民か放牧地を求め てオルマ側へ行かざるを得ない状況に追い込まれること

で生じているものとに二分されるといわざるをえない。 なお過去 100 年余りの間にわたってソマリが自らの生活域を拡大してきたプロセスには，ウシよりも旱魃に強いラクダを中心に飼篒してきた彼らの論理が反映して いると考えられる。旱魃が発生するたびにゥシ牧畜民か移動していった後の土地に，ソマリはラクタを核にして種極的に適応していった，そしてオルマ側に居残るソマ リがみられる本稿のような事例は，ソマリの生活域の拡大の一断面をみているものと推察される。筆者は，ソマ り遊牧の生態的適応構造と民族間の紛争のブロセスを通 して，過去100年余りにわたるソマリの民族移住の過程 を把握することを今後の課題としたい。

甜辞

本䅥の調査は，1991年4月より1年間にわたる日本学術振興会ナイロビ研究莩絡センターへの派覓によって可能になった。調查許可の取得にあたっては，ケニア共和国大統領府の C．A． Mwango 女史，ナイロビ大学アフリカ研究所（Institute of Af－ rican Studies）のS．Wandibba 所長などに御協力をしていただ いた．調査をすすめるにあたっては，北東州がリッサ地区やナイ ロビ市内に居住するソマリの人々に大変御世話になった。以上 の方々に対して品く御礼申し上げる次第である。

引用文献

Dalleo，P．T．（1975）：Trade and Pastoralism：Economic factors in the history of the Somali of northeastern Kenya，1892－ 1948．Ph．D．thesis，Syracuse Univ．
District Livestock Production Officer（1991）：Annual report for the year 1991（Garissa District）．Ministry of Live－ stock Development．
Elimi，A．A．（1991）：Livestock production in Somalia with special emphasis on camels．Nomadic Peoples，29：87－103．
Evans－Pritchard，E．E．（1940）：The Nuer．Oxford University Press，Oxford．向井元子訳（1978）：「ヌアー族」岩波安店．
Herren，V．J．（1990）：The commercial sale of camel milk from pastoral herds in the Mogadishu Hinterland，Somalia．Pas－ toral Development Network，1： 23.
Hjort，A．and Dahl，G．（1984）：Significance and prospects of camel pastoralism．In Hussen，M．A．ed．：Camel pastoralism in Somalia．Camel Forum Working Paper，7：11－35．
Hussein，M．A．（1990）：Management of camels and emigration of labour．Camel Forum Working Paper，36：1－9．
Lewis，I．M．（1961）：A pastoral democracy－A study of pastral－ ism and politics among the northern Somali of the Horn of Africa．Oxford Univ．Press，Oxford．
Merryman，J．L．（1987）：The economic impact of war and drought on the Kenya Somali．Research in Economic An－ thropology，8：249－275．
Merryman，N．H．（1984）：Economy and ecological stress：House hold strategies of traditional Somali pastoralists in northern Kenya．Ph．D．thesis，Northwestern Univ．
Samantar，M．S．（1991）：Camel milk output：Evidence from Somalia．In Baxter，P．T．W．ed．：When the grass is gone．The Scandinavian Institute of African Studies，Uppsala：162－ 176.

Samantar，M．S．and Mohamud，A．D．（1988）：The channels of
distribution in a Somali camel marketing system．Camel Forum Working Paper，27：1－16．
Swift，J．（1979）：The development of livestock trading in a Nomad pastoral economy：The Somali case．In Pastoral production and society．Proceedings of the Internaitonal Meeting on Nomadic Pastoralism，Paris，1－3 December 1979：447－465．
Tornay，S．（1979）：Armed conflict in the lower Omo Valley． 1970－1976：An analysis from within Nyangatom society． In Fuku，K．and Turton，D．eds．：Warfare among East African herders．The National Museum of Ethnology， Osaka．
Republic of Kenya（1988）：Garissa district development plan （1989－1993）．Ministry of Planning and National Develop－ ment．

Republic of Kenya（1990）：Statistical abstract．Ministry of Planning and National Development．

褔井勝珴（1984）：戦いからみた部族関係——東アフリカにおけ
るゥシ牧畜民 Bodi を中心に——「「民族学研究」 48：471－480．池谷和信（1993a）：ラクタ遊牧民ソマリ族の生活．「学術月報」46－ 1：50－55．
池谷和信（1993b）：都市の中の牧咅民——ナイロビのマサイとソ マリ．「アフリカレボート」16：23－27．
池谷和信（1993c）：ラクタ遊牧民ソマリ．「季刊民族学」17－2：52－ 57.

松田 凡（1991）：民族集団の併合と同化——エチオビア西南部 KOEGUをめぐる民族間関係——「アフリカ研究」38：17－32．佐藤 俊（1984）：東アフリカ牧畜民の生岩と社会．「アフリカ研究」24：54－79．

Camel Pastoralism and Conflicts under the Influence of the Development of Commercial Economy：A case study of the Somali in East Africa

Kazunobu Ikeya＊

Purpose of this paper is to describe the camel management systems and the migration patterns practiced by the Somali，also to explain the details of and motivation behind the conflicts often carried out on each other by the Somali and Orma．The author conducted interviews，and observed the behaviour of the native people in the Garissa District of North Eastern Kenya for about one month between May 1991 and March 1992.

The results can be summarized as follows：
（1）Livestock composition per household is normally within the range of 30－60 camels，0－200 cattle and 250－300 goats and sheep．The livestock are herded according to the available vegetation for their food－ requirements．Camels are kept in the bush from 8 am to 9 pm and are watered once every two days．
（2）There are two types of migration patterns．One involves short distance migration near a sedentary village，while the other involves long distance migration，about 80 kilometers，from the town of Garissa to the villege of Bula．The migration route is limited by several factors，such as the location of water sources，or the distance from the camp to a town or village where the women can sell milk to earn cash．
（3）Many Somali pastoralists crossed the Tana river and intruded into the Orma cattle grazing area．This resulted in several incidents of conflicts between June 1991 and March 1992 in which people were killed and livestock stolen．The author considers that the river crossing was motivated by shortage of food for the livestock caused by lack of rain，overgrazing near the settlement，and the recent increase in the number of cattle raised specifically for sale．

Key Words：Camel pastoralism，Conflict，Somali，Orma，Commercial Economy

[^5]（Received October 26，1992；Accepted October， 16 1993）

タクラマカン沙漠南縁の和夺•策勒における ウィグル族農民の農業生産活動

吉野正敏＊•藤田佳久＊•有薗正一郎＊•杜 明 遠＊

1．まえがき

沙漠化の過程における人間活動の果たす役割が重大な ことは，いまさら指摘するまでもない。これまで，多数 の研究や報告か刊行されている。また，開発と利用につ いての総合報告もある（夏ほか，1978）。しかし，その定量的な分析は必ずしも十分とはいえず，また農業的土地利用と沙漠化との関連を長家経済の面から考察した研究 はない。今回，日本の科学技術庁振興調整费による「砂漠化機構の解明に関する」日中共同研究の一環として，筆者らはこの問題の解明に参画した。その最初のアプ ローチとして，二つのオアシス和田•策勒（図1）を例 として取り上げ，まずゥィグル族農民の農業生産活動に関する資料の収集と間きとりを行なったので，ここにそ の結果をまとめた，この地区を取り上げた理由は，（1）ウ ルムチからのアクセスが比較的容易である。（2）すでに この共同研究として既存資料や文献の収集がかなり行な われている．（3）策勒には中国科学院新弝生物土垓沙漠研究所の研究站があって，調査に便利が与えられる。（4） この地域はタクラマカン沙漠の中でも非常に乾燥してお り沙漠化がはげしいとこれまでの研究で指摘されてい る，などである．まだ予察的な研究段階であるか，ここ に発表して今後の研究展開のために，種々お教えを乞う次第である。

2．研究地域と方法

タクラマカン沙漠の面積は中国の中で最大で，327， $400 \mathrm{~km}^{2}$ であり，その縁辺には，古くからシルクロード の一部として経済的に重要な位圜を占めるオアシスが あった，その歴史時代における立地位置の変選，興亡の変逻は，気候の変動やそれにともなう沙漠珧境の変化に関係している。タクラマカン沙漠南縁における歴史時代 の古いオアシスは今日の位置と比較すると北に 20 ～ 250 km ，平均して北に 150 km の位縕にある．南縁地区で沙漠化が進んだのは漢晋，唐末，宋元の時代という
（周，1983）．オアシスにおける農民の農業生産活動も， それにともなって変化した。特に人口増加ははなはだし く，例えば和田県1＂における最近の人口は1950年の2～ 3 倍，漢朝の時代の 22 倍といわれる。 さらに近年，特に 1980年代における変化は急激である（吉野，1994）。 1980年と1988年を比皎すると，人口の急激な增加の一方で，沙漠化と都市化のため，耕地面積は減少してい る．例えば，罦玉県では 7 万ム ${ }^{2}$ ，策勒県では 6 万 ムー，于田県では 7 万ムー減少した。技術の発展，例え ば，機㭜耕作面䅵の急增などにともなって食鋉の総生産冨は約7割増加している。総合してみると，タクラマカ ン沙漠南縁の諸県•諸市の農業総生産値は1980年代後半において $30 \sim 40 \%$ 增加しており，注目に値しょう。

天然の胡楊（Populus euphratica，Populus diversi－ folia）の林は，1950年代には和田河・クリヤ河一帯では まだ 793 万ムーあった。 これが 1970 年代には 300 万 ムーになった。これについては，詳しくあとで述べるか，最近の最もはなはだしい例ではオアシスから約 200 km も沙漠の中へ川に沿って薪用材の伐採に行く。
砂丘の移動速度は皮山県では $8 \mathrm{~m} /$ 年でかなり速い。 1960年代皮山県ではアンスとモモの生産が盛んであっ た．最高の年には 84 万元の生産高があった。 しかし，周縁の沙漠からの秒丘の侵入が急速なことと，文化大革命時代，果樹園の手入れが十分にできなかったことなどの理由と，さらに1978年5月に8級3 の大風があり，大き な被害を受けたので，1979年には樶高時の生産高の 3分の1になってしまった。

1951～1990年の和田における気温の変化をみると，冬の気温は約 $2^{\circ} \mathrm{C}$ 上昇傾向にあるが，夏の気温は約 $1^{\circ} \mathrm{C}$下降傾向にある。降水用は，冬は約 $2 \sim 3 \mathrm{~mm}$ 減少，夏は約 $5 \sim 6 \mathrm{~mm}$ の增加傾向にある。年の平均気温は約 $0.5^{\circ} \mathrm{C}$ の上昇傾向があり，年降水䡒にはほとんど変化の傾向が認められない（杜，1993）。

現地における今回のわれわれの聞きとりは，1993年 8月末から9月初にかけて，和田で 6 戸の農家（図2），策勒で 4 戸の農家と 1 戸の公務員宅（図 3）で行なった。 あらかじめ聞きとり項目は次のようにきめておいた。 す

図 1．研究地域，和田（ホータン）と策勒（チーラ）の位置．

図 2．聞きとりを行なった農家の和田オアシスにおける分布．

なわち，家族橉成•居住•農業生産•防謢林と風害•燃料•灌潛•住居の間どり・副業•災害などである。これ らの聞きとり記録は別にまとめた（吉野ほか，1993）。

資料は，ウルムチの中国科学院新垍生物•土壌•沙漠

研究所および中国科学院新坯地理研究所の図皌室およ び，北京の中国科学院地理研究所とその他で収集したも のである．

図 3．聞きとりを行なった睘家の策勒オアシスにお ける分布。

3．結果のまとめ

（1）タクラマカン南縁のオアシスの最近の譬業生産 1988年の統計を表1に示す。和田県•坓玉県の郷村人口は多い。策勒県は人口に対し，耕地面稹の割合が大 である．これに対し，墨玉県では機械耕地面積•有効灌溉面秒が大で，化学肥料使用昷あ大である。したがって， 1988年の値で農村の総生産は 2 億 5 千万元，農業総生産値も 2 㯖 2 千万元で，それぞれこの地域では最大に なっている。

しかし，このような値を単位面種当たり，単位人口当 たりなどの値で比較すると必ずしも塁玉県が高いとはい えない。いま，表1 から，単位面積当たり，単位人口当 たりの数値を求めてみると，表2 の通りである。この表 から次のことがわかる。
（i）郷村人口当たりの食粗総生産は和田市が㖟低，次 は喀什市である。これは両市が食䊅生産ではなく，商業活動などいわゆる都市的な活動や社会農副産品として分類される加工工業や小規模の生産工業などに活動がむい ていることを意味しょう。喀什市は特にこれがいちじる

表 1．タクラマカン沙漠南縁の諸県•諸市における農村経済の統計＊（1988年）．

	和田県	和田市	晊玉県	策勒県	喀什市＊＊	阿克䔉市＊＊＊
䛈村人口（万人）	18	6	30	10	4	11
耕地面敉（万ムー）	31	7	49	30	5	45
農作物総播種面栍（万ムー）	46	10	73	31	7	56
その中食椇（万ムー）	35	7	53	20	5	41
ワタ	4	1	10	4	0	9
油料	1	0	1	1	0	3
食程総生産量（トン）	91，994	20，513	123，412	52，434	14，609	93，374
ワタ（トン）	1，976	389	4，923	1，922	223	4，699
油料（トン）	1，304	322	1，457	1，272	163	2，397
年豚牛羊肉の総生産量（トン）	2，779	860	2，771	2，278	560	2，012
農業機棫の総助力（万ワット）	4，026	1，435	4，609	2，046	1，125	3，403
機械耕作面栍（万ムー）	5	3	18	16	2	17
有効灌溉面稍（万ムー）	31	7	49	30	5	45
化学肥料使用暒（トン）	3，719	526	4.130	1，129	214	2，638
農村の電気使用呾（万 $\mathbf{k W h}$ ）	251	90	207	67	1，545	134
農村の総生産（万元）	14，380	4，346	24，985	8，405	5，466	11，635
罣業総生産値（現価）（万元）	12,489	1，471	22，940	7，839	3，375	9，704
興業総正味生産値（現価）（万元）	8，559	2，014	16，463	5，489	2，376	7，360
	8，612	1，895	10，480	4,667	1，610	7.638
社会農副産品の買収価額（万元）	2，011	766	4，089	1，552	7，400	4，292

[^6]表 2．タクラマカン沙漠南縁における県別•市別の人口当たり，または，播種面程当たりの食鋉生産皿•農村総生産•罱業総生産値など（1988年）。

	和田県	和田市	墨玉県	策勒県	喀什市＊	阿克蘇市＊＊
$\frac{\text { 食梅総生産昷 (トン) }}{\text { 鄉村人口 (万人) }}$	5，111	3，419	4，114	5，243	3，652	8，489
$\frac{\text { 食稙総生産量 (トン) }}{\text { 播種面栍 (万ムー) }}$	2，000	2，051	1，690	1，691	2.087	1，667
$\frac{\text { 長村の総生産 (元) }}{\text { 鄉村人口 (人) }}$	799	724	833	841	1，367	1，058
播種面積（ムー） 郷村人口（人）	1.28	1.17	1.63	3.00	1.25	4.09
$\frac{\text { 副産品買上価額（元）}}{\text { 農業総生産値（元）}}$	0.16	0.52	0.18	0.20	2.19	0.44

表1と同じ理由で，比較のために＊西部の喀什市と，＊＊北縁の阿克蘇市をの例あげた。

表 3．間きとりを行なった農家の家族構成。

農家	家族構成	備 考	所 在 地
A	6人＝婦＋子供 4 人	－	和田県拉期査郷
B	11 人＝両親 $2+$ 世帯主夫婦 2 ＋子供5人十娘1＋孫1	世帯主は 60 歳．男の子は公安局，建築，进転手など． 1972年以来ここに住む。	策勒県策勒郷托盤艾熱克
C	4人 人世世帯主夫婦＋子供 2 人	主人 30 歳，妻 27 歳．戸籍は田舎． 1989 年入植．	策勤県策勒郷治竗站
D	11 人 $=$ 両親 $2+$ 世帯主夫婦 ＋子供 4 人＋妺 3 人	世吊主 30 歳，妻 25 歳。ここに住んで 5 代目，約 100年経過。	策勒県策勒郷
E	$\begin{aligned} & \text { 7人 人 = 両親+ 世世帯主夫婦 } \\ & + \text { +息子夫婦 }+ \text { 保 } \end{aligned}$	父親 85 歳，母親 77 歳．世帯主 60 歳，妻 50 歳． 1967年来ここに住む。	策勒県策勒郷「阿納尔力克托伯」
F＊	7 人＝主人＋妻＋子供 5 人	世帯主は紈の中学校教㧜．戸籍は都市．	策勒県巴希吾之買
G	7 人＝世帯主夫挶＋息子夫婦十子供 3 人	世帯主 45 歳，妻 40 歳．約 20 年前にここへ来た。	和田市吉牙郷
H	1人	36歳．1990年に離婚してここに住む。	和田県罕艾力克郷
I	4 人＝世帯主夫婦＋娘 2 人	主人 50 歳，妻 35 歳． 1980 年来ここに住む。	和田県罕艾力克響
J	1人	48 歳． 2 度離婚．	和田市紅旗公社
K	7 人＝世帯主夫婦＋子供 5 人	子供は男 3 人と女 4 人，計 7 人のうち 5 人。1987年以来ここに住む。	和田県

＊F家は農家ではなく，公務貝宅。

しい。
（ii）郷村人口当たりの農村総生産は今回研究した南縁地域では 1 人当たり 720～840元で西縁の喀什市の 1人当たり 1,300 元，北縁の阿克蘇市の 1 人当たり 1,000元に比較するとかなり小さい。これだけ貧困といえよ う。
（iii）播種面穎当たりの食粗総生産皿に関しては，こ

の表から特に傾向はうかがえない。
（2）家族構成
和田•策勒地区はウィグル族が 98% ，漢民族が 2% である．農民はウィグル族が 100% と考えてよい。今回，閒きとりを行なった 11 戸の家族梅成は表3に示す通りである。この表からわかるように子供 6 人が最高 で， 5 人が 3 戸， 4 人が 2 戸， 2 人が 2 戸， 1 人が 1 戸で

表 4．聞きとりを行なった農家の耕作面稍•作期•収皿

農家乱号	耕作面敉	作 期	叹 7 It
A	$\begin{aligned} & \text { コメ8ムー } \\ & \text { トゥモロコシ } 2 \text { ムー } \\ & \text { ワタ1ムー } \\ & \text { フトゥ少し } \end{aligned}$	6月初に直播	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
B	（耕地面称15ムー＋建物•庭5ムー） トウモロコシ6ムー コムギ5ムー ワタ（1993 年） 2.2 ムー 牧草 4 ム	$5 / 10 ~ 6 / 10$ ，コムギの条間にまき，10月中旬～11月上解に収楀 冬コムキ 9／10～10／10，春コムギ（少） $2 / 20 \sim 3 / 10$ にまき， 7 月に収櫒 $4 / 1 \sim 4 / 5$ にまき， 9 月上旬～10月下旬に収櫒 年 4 回刈	700~800 斤 / ム— 3～4年目生産血は多 い
C	（庭3ムー） $\text { コムギ } 3 \text { ム - }$ 果樹園19ムー（アンス，モモ，ナツメなど）	-	合計 1,000 斤 $(500 \mathrm{~kg})$
D	（耕地9ムー，建物•庭2ムー） ワタ5ムー コムギ・トゥモロコシ4ムー	$-$	－
E	$\begin{aligned} & \text { (耕地 } 9 \text { ムー, 建物•庭を含む) } \\ & \text { トゥモロコシ } 2.6 ム ー \\ & \text { コムギ1.9ムー } \\ & \text { ワタ4.5ムー } \\ & \text { アンズ少し } \\ & \text { クワ少し } \end{aligned}$	－	$3.000 \text { 斤 / 年 }$
F＊	（发2ムー）	－	
G	$\begin{aligned} & \text { ワタ } \\ & \text { コムキ } \\ & \text { トゥモロコシ } \end{aligned}$	4／1～4／5にまき， 9 月初～11月初に収稚 9月下旬～11月にまき，7月に収㪔 コムギを刈ったとき， $10 \sim 20 \mathrm{~cm}$ にのびて いる	$\begin{aligned} & 500 \text { 斤 / ムー } \\ & 800 ~ 1,000 \text { 斤 / ムー } \\ & 1,000 \text { 斤 / ムー } \end{aligned}$
H	（耕地 4.2 ムー，建物•庭1ムー） $\begin{aligned} & \text { コメ } 3.5 \text { ムー } \\ & \text { トゥモロコシ } 0.3 \text { ムー } \\ & \text { ワタ } 0.4 \text { ムー } \end{aligned}$	-	$-$
I	（耕地 3 ムー，建物•庭 2 ムー） コメ1ムー トゥモロコシ2ムー ワタ（1993 年は 0 ） プゥウ少し	5～6月にまき， 10 月初に収㷏 6月にまき， $9 / 20 \sim 10$ 月初に収䂭 3～5月にまき，9月に収檴除は12月に埋めて，3月初にだす	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
J	－	－	－
K	（耕地 $15 ム$－，延物•庭 $0.6 ム$－） $\text { トゥモロコシ } 6 \text { ムー }$ ワタ4ムー 果樹園5ムー	6月にまき，9月末に収変 4月初にまき，9月末～10月初に収椛 ブゥ 11月初に埋め，4月中旬にだす	$\begin{gathered} 500 \mathrm{~kg} / ム- \\ 200 \mathrm{~kg} / ム- \\ \text { - } \end{gathered}$

[^7]表5．明きとりを行なった農家の水•燃料•災害など。

農家記号		焱 料	災 害	その 他
A	夕ムを公社か 1980 年代に建設。水不足はないかく，3，4月は限界に近い。生活用水 は井戸水，甘い。	－	4月に強風．被害少ない。	－
B	㴖溉計画は絊政府がきめる。春に毎年使う水劻を耕地面䅤と収校の良否により分配 する。 地下水で不足分を補う。ボン フ場 4 力所ある． 60 m 深 さの地下水を汲みあげる。生活用水は井戸水，页は泓溉水も使う。	ポプラとタマリックスを神涘 （策勒県の中）に行って取ってくる。現在 30 km以上． 1 週間 1 回，冬があ より多い。夜2時に出発し て夕方 6 時にもどる。石炭は高くて使えない。	コムギが春の大風で収櫒でき なかったことあり， 1977年，1982年，1984年風により大被害。 ワタは1984年6大被害。	人口増のため水が不足し，枯 れる木が多い，ボブラは建材，タマリックスの枝は壁材にする。 耕地で，権類化したところは この瑯にはない。隣の䌅に はあり．
C	春に水不足し，地下水を使 う．水の费用は，コムギ 22 元／ムー，トウモロコシ 6 元／ムー，ワタ5．8元／ムー である。 檌溉は春に2～3回． 3 ムー の庭に対し20元／時間／回 （水＋電凹代）である。この 20 元のうち，電気代 0.1元／kW の補助がでる。	植林の枝を使う，林を管理し ているため． 沙漠へは不足分をとりに行 く．	1992年春は水不足のためコ ム半不作。 1989年以来，風で屋根を飛 ばされたことあり，風のた め 3 km の小学校に行かれ ないことあり，雨で壁か壊されたこともあ る。	風が強く，地力かない。
D	水の値段はコムギは22元／ムー／年，ワタ12元／ ムー 年．山の水は服近少 なくなり，地下水を使う。 それでも不足きみ。	石炭は少し使う，あとは涏の 木．沙濙には行かない。沙漠にとりに行かない農家は この大際の 5～10\％．小隊 は108軒あり，そのうちの 10 亁は石炭のみ。 石炭の值は $130 \sim 150$ 元／ト ン（配窃付）制炭は 80元／ トン。一冬に2トン使う。	－－	－
E	30 軒で共同井戸． $40 \sim 45 \mathrm{~m}$深。洴溉用水は9ムーに対 し．川水だけでは不足。	沙漠に葚をとりに行く。	砂あらしのため「玅眼」か多 い。	平均表命が長い。
F	庭（2ムー）に金を支払って㴖濫する。 川の水を使い。地下水は使わない。生活用水は誔の一嗤にある川水を溜めた池から，不足す るときは $1 \sim 2 \mathrm{~km}$ 先の井戸へ親城の口バ車で行く。	冬は石炭を使う．135～140元／トンで，1～2トン／冬使う．更は伐採した木材を買う。新木はロバ車1台 （ $300 \sim 400 \mathrm{~kg}$ ）で $20 \sim 30$元．	－	－
G	摊溉時間は小隊単位できめ 3．川水は5月のコムギと ワタ栽培に不足することあ り．地下水は使わない。生活用水は井戸水。	冬には石炭を使う。近くの树 とトゥモロコシの楽ですま せる．沙漠に薪をとりに行 かない。この小隊の 70\％ の人は汶漠に行かない。	－	30～35年前に沙漠へ蒜をと りに行った。
H	－	冬に赫を使う．市場で買う．	春には西風か，北風で強い。	－
I	春にも水は十分．1987年，㚼では水は充分だったが医 では不足した。	冬は石炭を使う。羂は果楜園 からの澵だけ．沙漠には行 かない。石炭は150元／ト ン，一冬に1トンで十分．	春には大風あり，ポブラの枝 か毎年折れる。 1993年8月の大雨で屋根に被害があった。	－
J	－	冬は石炭．更は果森園からの赫．沙蛽には行かない。	－	4年前に沙㴖に行った。午前 5 時に出発し，数日しても どる。ロバ車で $7 \sim 8$ 人か一団になって行った，炏，冬のみ1回くらい行って1 ロバ車で 150 kg とった。
K	春の水は十分．	1 年中石炭を使う．木は全く使わない。	1993年5月，6月風による ワタ・謿の被富あり，8月 の大雨では屋根か墲れた。	10年前，主人の父親は片道 5日， 135 km 行った。秋と冬に 1 回， $500 \mathrm{~kg} / 1$ 口ハ車，8～10家族1団で行っ た．

あった．平均して 3.6 人となる． 11 戸のうち 2 戸は離婚 して世蒂主が1人で住んでいた。そのうち 1 人は 2 回離婚したという。やはりイスラムの高い離婚率を反映して いる。
世帯主の両親と共に住んでいるのは 3 戸，両親とは別 に住んでいるのが 6 戸である。この地区は比較的高駖者 の多いところで， 100 歳以上もめずらしくない。
（3）耕地面禹•作期•収昷
耕地面積を，閒きとりした範囲で，すなわち6戸で平均値を求めると $8.7 ム$ ーとなる。これは庭などの部分を除いた値で，建物•庭の面程の平均は $2.2 ム$ ーとなる。
そこで（耕地面税＋建物•庭面壊）／（全家族人数）を求 めると 1 人当たり 1.44 ムーとなる。表2に示すように，県平均，市平均で 1 人当たり $1.2 \sim 3.0 ム$ ーであるから， ほぼ平均的な喠家からの間きとりを行なったと考えてよ かろう。

裁培作物は表4に示す通り，トゥモロコシ十冬コムギ か多い。その栽培面䖽は最高では1戸で $6 ム-$ ，平均 1戸当たり3．3ムーである。次いでワタを栽培している曼家が多く，1戸で最高5ムー，平均で1戸当たり 2.9 ムーである。コメを作る農家は少ないが，1 戸当たり1 ～3．5ムーで，平均 $2.3 ム$ ーであった。この他は牧草，フ ドゥ，果樹（アンス，モモ，ナツメ，イチジクなど，多種）だかっ，用は少ない，クワも喰蚕か盛んになるにつれ て多くなっているようであるか，庭や垣根状に作るので栽培面栍は把挜しにくい。
作期は学働配分ばかりでなく，オアシスでは用水昷の配分計画において極めで重要である。閒きとりした結果 では次の通りであった．すなわち，トゥモロコシを5月中旬～6月上旬にコムキのの条間に播く，コムギを刈ると きには $10 \sim 20 \mathrm{~cm}$ に成長している。9月下旬～11月上旬に収穔する。冬はコムギは9月下旬～11月上旬に播 く．春コムギは少ないか， 2 月下旬～3月上旬に播く。い ずれも7月に収橡する。コメは6月に直播する。ワタは 4 月初に播き， 9 月上旬～11月上旬に収䔉する。種を播 く適期が他の作物より短いことは，水利用の面からは㦑 しい条件となる。

トゥモロコシの収皿は条件の悪いところで $350 \sim 400$ $\mathrm{kg} / ム$－，普通は $500 \mathrm{~kg} / ム$ ーである。コムギは $400 \sim$ $500 \mathrm{~kg} /$ ムー，ワタは $200 \sim 250 \mathrm{~kg} /$ ムーである。
（4）灌硫用水と生活用水
表5に灌䩤用水と生活用水について明きとりの結果 をまとめた。これからわかることは，山加らの灌単用水 は現在，春の 3.4 月には限界か不足きみである。他の月はほぼ十分である。水不足の場合には約 $40 \sim 45 \mathrm{~m}$ の深さの共同井戸の地下水で補う。灌瑯計画は（副）镇長

がきめる．水の値段は例えば，コムギが年に 22 元／ ムー，トゥモロコンが年に6元／ムー，ワタが年に12元／ムーである．この値段は郷によって差があるようで ある。
生活用水は自家用の井戸からの水を使う。夏には灌澈水を使うことあある。また，庭の隅にある溜め池に水を眝水して使うこともある。井戸水は甘い（塩分を含まな い）
策勒県総合発展規画委員会（1988）による県全体の作物別の淮溉期と用水里計画のうち，主要な作物をあげる と表6の通りである。
1985 年全県の要水国計画の合計は，農作物用 11,754万 m^{3} ，林業用 2,408 万 m^{3} ，生活用 82 万 m^{3} である。こ れによっても带作物用の灌溉水且から 82% を占めてお り，いかに重要な部分であるかかわかる。しかも，沙漠化の進展にともない，より多舟の灌嘅水昷が必要となる ので，新しい問題か発生する。 さらに，人口增加による
 は避けられないので，問題はかなり深刻である。
（5）燃料
聞きとりを行なった農家の䇥囲では，（i） 1 年間に使用 する㜣料の全部を沙漠からの薪のみでまかなう場合，（ii）一部（冬）は石炭を使い，一部（夏）は薪でまかなう場合，（iii） 1 年の全部を石炭でまかなう場合の 3 形㗽があ 3．沙漠からボプラ（胡㛫，Populus spp．）とタマリック ス（柽柳，Tamarix spp．）を伐採してくるか，またはこ れらの根を掘ってくる。あるいは，自家の庭（果樹園） からの樹や枝，トゥモロコシのわらなどでまかなう。
石炭を使わない理由は「値段が高くて購入できない」 である．値段は $130 \sim 150$ 元／トン，枌炭は 80 元／トン である．家族の人数にもよろか，10月から3月ころまで の冬半年の間に $1 \sim 2$ トン使用する。現在，石炭だけで燃料をまかなっている農家数は全体の 10% 以下と推定 される．燃料または建材としてのタマリックスの採取は一般的にはオアシスから1950年代にはロバ車で1日か けた，これが 1960 年代には 2 日となり， 1970 年代には 3～4日となり， 1980 年代には 4～6日になったと言わ れている（骝•張，1987）。今日，沙漠における薪の伐採 は沙漠化につながることを農民もよく知っており，ある小隊では 70% の人は沙漠へ採取には行かないという。 しかし，詳細な数字は不明である。ロバ車で沙漠へ行く場合，オアシスから 30 km までの䬬囲へは日煬り可能 であり， 1 週間に 1 回，夜 2 時に出発して 18 時頃㷌る。 1980年代前半，片道に数日をかけて；オアシスから約 135 km の地点まで行って伐採していた例をわれわれは聞いた。秋と冬に1回，8～10家族が一団となって1口

表6．策勒県における主要作物の計画用水皿と灌溉季節（1985年）

作 物	灌溉回 数	年要水昷（万 m^{3} ）	灌 溉 月
冬コムギ	7	3，640	3～6月，9～12月
春コムキ	4	1，692	5～8月，11～12月
トゥモロコシ	5	3，679	5～9月
第二作トゥモロコシ	3	570	7～9月
ワ 夕	3	550	12～2月，6月， 8 月
アルファルファ	3	789	12～2月，6～7月

表 7．じゅうたんに関する聞きとり結果

㖘家記号	織る季節	㗢き手	䜌る速度	綾る㱏	値 段
D	$\begin{aligned} & \text { 10月から3月 } \\ & \text { まで } \end{aligned}$	世蒂主＋妻 ＋林3人	$2 \mathrm{~m} / 1$ 人／月	1カ月に5人で $5 \mathrm{~m}^{2}$ のもの 2 枚	$100 \sim 140$ 元 $/ \mathrm{m}^{2}$
G	1年中（夏は外 で，冬は室内）	息子＋嫁	$(1.5 \mathrm{~m} \times 2.2 \mathrm{~m}) / 2$	－	$\begin{aligned} & 1 \text { 收が }(1.5 \mathrm{~m} \\ & \times 2.2 \mathrm{~m}) \text { の } \\ & \text { 6枚 } 1 \text { 組で } 1,230 \\ & \text { 元 } \end{aligned}$
じゅうたん工場	1年中		$\begin{aligned} & 4 \mathrm{~m}^{2} / 人 / 12 \text { 日 } \\ & \text { 最低は } 3 \mathrm{~m}^{2} / 人 \\ & 12 \text { 日 } \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{~m}^{2} / \text { 年 } \\ & \text { (余力あり) } \end{aligned}$	
K	冬を中心に， 9力月	娘2人	${\underset{\text { 2人/月 }}{3.6 \mathrm{~m}} \times 1.68 \mathrm{~m} /}^{2}$	18枚／年	450元／枚

バ車に $150 \sim 500 \mathrm{~kg}$（平均して 230 kg と推定される）䅣んで帰った。周（1983）は，燃料の採取を 1980 年代の初期，通常はオアシスから 40 km までの範囲で行なっ たか，極端な例として 125 km まで行く例があると記载 している．われわれの聞きとりの結果もこれとほぼ同じ距離であった。周（1983）によれば，和田河両岸の薪の伐採は 2.6 万トン／年と推定されている。町の戸籍の人，す なわち公務員，停年後ここに住み普いた人で，沙漠に薪 を伐採に行かない場合は，付近の市場で薪を買う，1口 バ車（ $300 \sim 400 \mathrm{~kg}$ ）の 1 台分が $20 \sim 30$ 元で，家族 7 人 で1カ月もつ。
（6）災害その他
春に強風が吹き，コムギが被害を受けることがある。例えば，1978年5月，1982年，1984年に大風が吹き大被害があった。1978年5月，策勒県では大風のため 3万ムーの冬コムギ・春コムギの畑と 4.3 万ムーのワタ畑 に被害があった。
策勒県の托伯村はかつて南可の中でも特に有名な＂ざ くろの郷＂であった。1966年には，全村で500本のざ くろの樹があり，収入は 16,000 元／年に及んだ，しか し，文化大革命の影㱞で十分な管理ができなくなり，そ のため1967年に沙漠化が始まり，村のすぐ西側まで砂丘が押しよせてきた。 しかし，今日，ざくろの果樹園は

もどりつつある．
大風で家屋の屋根が飛ばされることがある。また，強 い風のために小学生が登下校できなくなることがある。砂あらしでロバと人が離れてしまうことがある。人は帰宅しても口バが帰宅できない場合がある。60歳の人の経験では村で2～3年に1回はこのような被害が起こ る。
砂あらしによる目の病，いわゆる＂砂眼＂が多い。赤目，かゆいなどで大した病気にはならない。呼吸器疾患 じん肺の率は他の地域より多い。
大雨では泥壁や屋根が壊れることがよくある。しか し，普通は大きな被害には至らない。
（7）収入
国へ納める分はコムギでは1ムー当たり 6.5 kg ，トゥ モロコシは家族1人当たり 175 kg の残りを国へ納め る．例えば，農家D の場合，国との契約は $450 \mathrm{~kg} / ム ー$ で，このうち個人消費は1人当たり $175 \mathrm{~kg} / ム$－で， $275 \mathrm{~kg} / ム$ ーが国へ納める分である。ワタは全部売る。
人民公社のころは1人当たり $30 \mathrm{~kg} /$ 年のコムギ枌だ けが配分された主食用の食料であったが，跟近はコムギ を作り，自家用にもすることができ，コメもときどき買 える。

すでに表2に示したように，農村の総生産は1988年

の状態で 1 人当たり和田市では 724 元，和田県では 799 元，畀玉県では 833 元，策勒県では 841 元である。 これは総生産額を紈村人口で割った値なので，これに家族数をかけた値が 1 農家の総生産となろう。これに対 し，地域全体の平均でみると，策勒県を例にとると，䄅民1人当たりの収入は284元で，1985年には年収 120元以下の带家と農民はそれぞれ 6,043 戸と 24,570 人で あるという。全国のうちでも有数の貧困県である。これ らの背影の下に，閎きとりの値を根拠にしてより量的な考察が必要であろう。

荄忝は，まだ開始して $2 \sim 3$ 年の贯家が多い。忝の種 を買って，1993年の状態で1農家当たりマユ約 25 kg を生産の予定という。この他，次項に記すように，じゅ うたん織の副業による収入がある。
（8）じゅうたん，その他
じゅうたん織は豊家の副業としてこの地域では特色あ るものである．表7に示すように，織る季節は冬を中心 にした6～9カ月である。主婦•娘などの場合は，1年中織る場合もある，男（主人または息子）の場合，農作業 が仙しくないときはいつでもという人もある。
織る速度•周は1カ月に1人で $2 \sim 4 \mathrm{~m}^{2}$ であるが，経験はもちろん，模様や質によって非常に異なる。じゅ うたん工場では疎低でも12日間に1人で $3 \mathrm{~m}^{2}$ ，通常は $4 \mathrm{~m}^{2}$ というから，農家の副業の場合は工場の労働者よ りは速度（量）は小である。
D農家の場合，6カ月じゅうたんを織り，1 カ月に家族 5 人で $5 \mathrm{~m}^{2}$ のもの 2 枚，すなわち $10 \mathrm{~m}^{2}$ 織る。値段 は $100 \sim 140$ 元 $/ \mathrm{m}^{2}$ だから，単純計算をすれば， 6,000 ～8．400元の現金が入る。

G㖇家の場合，高級な6枚1組（1．230元）のものを織っている． 1 枚は $1.5 \mathrm{~m} \times 2.2 \mathrm{~m}$ で， 1 人で 1 力月かか る．家族 2 人で織っているので，年に 24 枚すなわち 4組で 4，920元となる。

K 農家の場合は，娘 2 人で年に 18 枚織るので， 1 枚 が 450 元だから， 8,100 元となる。以上 3 罱家をまとめ ると織り手 1 人当たり $1,200 \sim 4,000$ 元の副業による生産額である。したがって，じゅうたんを織る肆き手が居 る場合は，材料費・その他経費を引いた純益収入は農家収入に比㬵してかなり高い比率を占める結果となる。

これらの値は，農村総生産額が 1 人当たり約 800 元 であるこの地方では，1農家の家族数が 10 人としても 8,000 元であるから，重要な現金収入を占めることを示 している。

じゅうたんを織るには，技術，デザインなどに対する感覚が要求される。もし，この水準まで達しない場合は，工場の下誚け，あるいは，材料を市場から購入して羊毛

を系につむぐだけの仕事も副業として意味を持つ。
すでに燃料の項で記述したように，じゅうたんを織っ ている農家は新を使わず石炭を使っている。じゅうたん による収入によって，石炭を買う経済的な力を持ってい るのである。

4．結論とあとがき

今回，ウィグル族の滕家10戸と教員1戸から間きと りを行なった。その結果をまとめた。聞き取りした範囲内において，次のことが指摘されよう。
（1）タクラマカン沙漠の南縁のオアシス和田•策勒 の農村総生産は1人当たり $720 \sim 840$ 元で，北縁や西縁 のオアシスの $60 \sim 80 \%$ である。貧困の実態がわかる。
（2）家族檏成をみると，高齢な両親と数人の子供を持 つ者が多い。
（3）耕地と建物•庭の面積を全家族数で割った値は1人当たり1．44ムーである。聞きとりを行なった農家の平均では 1 戸当たり 8.7 ム ー である。
（4）トウモロコシ・コムギ・ワタが主要な作物であ る．他にブドゥ，果樹（アンズ，モモ，ナッメ，イチヂ ク，ザクロなど）がある。
（5）灌溉用水は春には不足きみである。地下水を使っ て補う場合が多い。自家用水は井戸水が多く，用水の一部は河川水を使う。
（6）人口增加が農作物生産皿の増加を必要とし，耕地面程の拡大を必要とする。そしてこれがさらに用水用の增加につながる。この場合，地下水を利用せざるをえな くなる。
（7）燃料は，a：沙漠からの薪のみを使用する農家，
b：1 年のうちの一部（冬）の期間は石炭で，他の期間 （夏）には新または庭（果樹園）からの樹や枝を使用する農家，c：石炭のみを使用する農家の 3 型垫がある。石炭 を利用しない理由は高価なためで，石炭を使用している農家はじゅうたん織りなどの副収入がある場合である。
（8）沙漠へ伐採に行くには，オアシスから，現在 125～135 km，片道数日をかけて行く例がある。口バ車 1 台は $150 \sim 500 \mathrm{~kg}$ を程んで帰る。 $8 \sim 10$ 家族が一団 で行く。
（9）春には大風によるコムギの被害が顕著である。砂 あらしによるこの地域では目や呼吸器などの疾患があ る。
（10）じゅうたん織りで，1年に織り手1人当たり $1,200 \sim 4,000$ 元の生産をあげられる。じゅうたんを織 る儌き手か家族の中にある場合，材料費その他の諸経費 を引いた純益は副収入として重要である。

あとがきとして，以上の諸点に基づき，指摘したい問題点は次の通りである。

人口增加によって食椇需要が增し，これが耕地面程の拡大をもたらす。 これは水需要の増加につながり，川の水の不足を地下水で補わねばならない。しかし，過度の地下水利用は沙漠化につなかるので，長期的な対策の見通しか必要である。
沙漠の植生に依存して，燃料や建材の需要をみたすの は限界にきている，人口增加にともなってさらにこの需要が増加するのをどう解決するのか。例えば，じゅうた ん織りなどの副収入によって石炭を買う経済力を高める ことは短期的には解決策のひとつであろう。 しかし，長期的にもこれでよいのか。

敏 辞

中国科学院闌州沙漠研究所莫 訓誡所長をはじめ，鳥鲁木斉 の中国科学院新鹏生物土淁沙漠研究所および同じく新䳏地理研究所の各位には非常にお世話になった。 特に，中国科学院新楖生物土境沙漠研究所の策勒研究站の張 部年と安尼瓦尔筧買提の両氏には現地における㽘きとりに関して多大の協力をされた。 ここに深时する次第である。

注

1）和田地区は和田市，和田県，策勒県，恩玉県，皮山県，洛浦県，于田県，民冨県からなる。
2）1ムーは 6.667 a で， 1 斤は 0.5 kg である．
3）地表上 10 m 高度で平均風速 $17.2 \mathrm{~m} / \mathrm{sec}$ 以上の風。

引用文献

到 名延編：「柽铆屈研究鑑定成果文集」中国科学院新谓生物土丧沙漠研究所，鳥忽木斉：26－52．
策勒県総合発展規画委呈会（1988）：「新鴨維吾尔自治区策勒県国民経済•社会総合発屁規画，1986～2000」．
杜 明遠（1993）：中国気温•降水変化図表．
周 興佳（1983）：和田地区沙漠化的現状及其防治．「新琾理境保骅」1983－3：7－8．
吉野正敏（1994）：タクラマカン竗渫南縁のオアシス和田•策勒 の環境と人間活動．「罣大史学」3：1－27
 カン沙漠南縁の和田•策勒におけるウィグル族農民からの明 きとり記録（1993年8月～9月）」愛知大学文学部地理学教室。
更 訓誡ほか者，邱 華盛訳（1991）：「沙漠の開発と利用」新讷科技衡生出版社．
Yoshino，M．（1992）：Wind and rain in the desert region of Xinjiang，Northwest China．Erdkunde，46：203－216．

Agricultural Activities of Uygur Farmers in Hotan and Qira in the Southern Part of the Taklimakan Desert

Masatoshi Yoshino＊，Yoshihisa Fuilta＊，Shoichiro Arizono＊and Mingyuan Du＊

In order to make clear human impacts on the desertification processes in the Taklimakan Desert，which is the biggest desert in China，a case study was carried out in the Hotan and Qira Oases．These oases are located in the southern part，the driest part，of the Taklimakan Desert．We interviewed Uygur people at ten farmers＇ families and one middle school teacher＇s family in August and September，1993．The results obtained are as follows：（1）Agricultural gross production in the oases of this area is 125－145 US dollar per head per year，in contrast to 170－220 US dollar per head per year in Kashi in the western part，or Aksu in the northern part of the desert．（2）High age peoples，older than 100 years＇old，are not seldom．5－6 children are frequent．Average is 3.6 children per family．There were two cases of divorce among eleven families visited．（3）Average total area of cultivation land，building ground and garden is 9.5 a per head in these oases．Average of the total area of the families visited is 58 a per household．（4）Main crops are corn，wheat and cotton．The fruits are grapes， apricots，peaches，jujubes，figs，pomegranates and so on．（5）Shortage of irrigation water trends to occur in spring．In such cases，it is supplemented by ground water．For the sake of living，well water is used generally． （6）Due to the population increase，demand of water has been increasing according to increasing of the cultivation area．In the coming near future，ground water must be utilized more．（7）There are three types of fuel utilization：a）fire woods from the desert only，b）coal in winter and fire wood in summer and c）coal only． The number of households for type c ）is about 10% in the better villages．The most farmers can not buy coal

[^8]（Received November 11，1993；Accepted December 30，1993）
because of price. (8) To collect fire woods, they are going into the desert $125-135 \mathrm{~km}$ from the oases in the case of maximum distance today. It takes ten days to two weeks with 8-10 families in a group by donkey barrows, which carry $150-500 \mathrm{~kg}$. (9) Strong winds cause wind damage on wheat and cotton in spring and broken the trunks and branches of shelter belts. Heavy rain sometimes damage roofs and walls of the houses. (10) Carpet production is very important as a side job of the farmers' families. If there is a worker for it in a family, mainly wife, daughters, or sons, they produce carpets with 200-680 US dollar per worker per year. This is high amount of production as compared with the agricultural gross production.

As a conclusion, the followings can be summarized: The utilization of ground water for irrigation shall be increased in near future, caused by increasing cultivation area due to the increasing population. Over pumping-up of grond water, however, will be connected to desertification directly. It is indicated that, from the viewpoint of Oasis agriculture, productivity of market crops such as cotton or fruits should be increased. Collecting fuel, building materials, and grasses in the desert, and over-grazing around the oases are coming to a limit to utilize. They are of course connected to desertification. Instead of the woods for fuel, coal can be used more by increasing farmer's income from side job such as carpet production.

Key Words: Desertification, Uygur farmer, Taklimakan Desert, Oasis agriculture, Carpet production

特集：つくば発，沙漠へ

「つくばシンポジウム」に寄せて

袴 田 共 之＊

かつて外国へ行った折「＂つくば＂サイエンス・シ ティーを知っていますか？」と外国人に聞くと，「知らな い」と答えが返ってきたものである．しかし，最近は，「スクーバ（scuba のように聞こえる）ネ，知ってるョ」 と返るようになってきた。筑波研究学園都市の起工式か 1969 年に行なわれて 20 数年，工事着工（1972 年）か ら約 20 年，主要な機関が出そろった 1988 年から数年， ようやくその存在と研究の成果が世界に認識され始めた ようである，つくばの地では，沙漠学会の会員も少なか らず研究をすすめており，会員外の研究者も沙漠化防止 や乾燥•半乾燥地に関する研究を行なっている。そのよ うなつくばの地と各大学•研究所，およびそこにおける沙漠研究の様子を紹介してほしいという要望に答えるか たちで，「つくばシンポジゥム」を開催することとなっ た。その「つくばシンポジゥム」は，「つくば発，沙漠へ」 をうたい文句にして，通商迕業省工業技術院地質調査所 の共催，熱帯農学会の後援を得て，1992年12月10日 （木）から11日（金）にかけて，つくば市にある通商産業省工業技術院共用講堂の大講堂を中心会場にして行なわ れた。シンポジゥムでは下記の 6 題の講演が行なわれ た。なお，演者は，中国から参加頂いた王 炳華氏以外，現在までつくばの地で生活し研究を展開してこられた方々である。
－一般公開講演：山本正三（筑波大学名兴教授，獨協

大学教授）

「ブラジル北東部の半乾燥地域における土地利用の変化」
－シンボジゥム：
1）運営委員会（山川修治：崫業嫄境技術研究所）
「つくばにおける沙漠•沙漠化研究の動向」
2）松久幸敬（地質調査所）
「石英粒子からみた沙漠の形成」
3）杜 明遠（中国科学院自然资碍総合考察委員会•熱帯農業研究センター）

「中国の沙漠の気候と社会」
4）根本正之（農業環境技術研究所）
「植生から見た中国における沙漠化の現状」
5）古冓田一雄（筑波大学地球科学系）
「中国乾燥地域の水文珧境」
6）王 炳華（中国新样文物考古研究所）
「シルクロードの考古学」
いずれもそれぞれの演者の研究に根ざした，内容の吡 い，示喛に富む講演であり，本学会の研究の進展ぶりを改めて認識させる有意義なものであった。本特集は，こ． のシンボジウムにおける講演の中からご寄稿を頂いた 3編を収録したものである。

お仙しい中にもかかわらず，こ講演を頂き，この特集 のためにご寄稿を頂いた著者の皆様に深謝いたします。

Special Report：Tsukuba Symposium on Arid Land Studies－Introduction

Tomoyuki Hakamata＊

The Japanese Association for Arid Land Studies organized the Tsukuba Symposium on Arid Land Studies on 10 and 11 December，1992．The objectives were to introduce outlines of studies on arid and／or semiarid area in Tsukuba Science City and for partisipants to discuss about the studies．

The lectures given by the invited speakers were collected here as a Special Report．

[^9]
つくばにおける沙漠•沙漠化研究の動向 ${ }^{\dagger}$

山 川 修 治＊
Trends in Research on Deserts and Desertification conducted in Tsukuba

Shuji Yamakawa＊

1．はじめに

つくばシンボジゥム「つくば発沙漠へ」の開催にあた り，当該諸プロジェクトの連携を深める契機とすべく，標記の企画が立案された。開係各位のご協力をえ，一応 のとりまとめができたので報告したい。ここでは，研究代表者または分担者が筑波研究学園都市に基盤を置いて いる場合に限定する。なお本䅥では，用語の記㦳を統一 して，「沙漠」「沙漠化」を使用し，参考文献のみ原文に準ずるものとする。

2．研究プロジェクト一䭆

各研究プロジェクトについて，タイトル，担当機関，研究代表者，対潒地域などを挙げる。内容については概要のみこく簡単に紹介する。項目が多皮にわたるもの， および内容の不詳のものは，概要の記㦲を割愛した。

凡 例
【】：主催省庁•団体，［］：メインテーマ番号，〈 〉：実施年度および開催年月日，〔 〕：担当機関•担当者または委託先，（○）研究代表者，＊：概要，※： シンポジゥム・研究会等，\｛ \}: 当該地域研究機関,
（\＃：中国科学院，1：新岛生物土堙沙漠研，2：雨州沙漠研，3：閶州冰川凍土研，4：新弝ウイグル自治区気象科学研，5：気象科学研究院\}

1）国レペル
【A．文部省】
［A－1］地球圈－生物圏国際協同研究計画（IGBP）
※International Symposium on Global Change（IGBP）〈1992．3．27～29〉 ※シンボジゥム「日本のIGBP 研究の現状と将来」〈1993．2．8～9〉／＊特に（第7領域）「地球琚境に係わる人間活動の影管評価」，その中の「土地利

用小委員会」〔绶知大文学部：©吉野正敏，京都大農学部：北村貞太郎）Human Activity and Global Environ－ ment（HAGE）が沙漠化研究に関係深い。 ※地球嫄境回復•保全における農林業の䅡極的役割（Part 1）〈1992． 10．7－8〉
－［A－2］旦中合同黒河流域地空相互作用研究計画 （HEIFE）〈1989～93〉（文部省国際共同研究事業，測地学審議会 WCRP 特別委員会，京都大理学部：〇光田
象とし，下記の各項目からなる。
（1）大規模現象（1）GCMにおける境界首モデルの改良〔気象研気候研究部：時岡達志•山崎孝治•鬼頭昭雄〕 ＊得られた資料を用い大気大循現モデルを検討する。（2）水収支•熱収支に関する地表面状㮣の衛星観測〔筑波大地球科学系：安成哲三ほか〕＊NOAA 術星のAVHRR センサーのデータを半径約 $1,000 \mathrm{~km}$ について処理した アルベド・輝度温度•植生指数の画像を解析する。（3）衛星画像データによる蒸発散量の算出（筑波大電子情報工学系：星 仰］＊LANDSAT－TM を用い四季の蒸発散血を解析する。
（2）水循嫄（1）乾燥地域内での地下水•蒸発に関する研究〔筑波大地球科学系：古瀪田一郎ほか〕＊沙漠・オ アシス地域において，土壌水分，吸引圧，地温，土脿水•地下水の水質などを測定し，土㙋水分蒸発散，地下水函餍腪の機構を解明する。（2）半乾燥地域における熱収支と乱流翰送に関する研究〔筑波大地球科学系：甲斐密次ほ か〕＊半乾燥地域における地表面熱収支と乱流輪送の季節変化を明らかにする。（3）沙漠あるいは半乾燥地面から の各種物理近の乱流輸送の観測〔国立䍛境研：光本茂記 ほか〕＊沙漠•半乾燥地の地面から運動舟•熱•水蒸気• CO_{2} などの乱流翰送昷を係留気球で測定する。
（3）黄砂および飛砂の（1）ライターによる黄砂の空間分布と大気境界局の樌造に関する研究（筑波大地球科学系：甲斐寜次ほか，都立大工学部：阿部 真•長沢親生〕

[^10]＊黄砂の有力な発生地と考えられるゴビ沙漠でライター観測を行い，黄砂の舞い上がり機構を解明する。（2）中国大陸沙漠における大気エアロソル澗度と粒径分布〔気象研物理気象部：牧野行雄•池上三和子，財前祐二）＊中国沙漠地帯におけるエアロソル嵚度•粒径分布と季節変化を解明する。（3）中国大陸•日本上空に浮遊する個々の黄砂粒子の物質組成に関する研究〔気象研応用気象部：岡田菊夫，物理気象部：池上三和子］＊電子顕微鏡を用い長距離輸送中の黄砂粒子の変質過程を解明する。
－A－3］プラジル北東部における土地利用•水利用の変化に伴う生態系の地域的変化（科研蜜海外学術調査）〔元 筑波大地球科学系（現 東京聖徳大）：©西沢利栄〕 ※国際シンポジゥム The Fragile Tropics of Latin America〈1990．5．29～30〉
－［A－4］都市化に伴う水循環の変化に関する研究（科研費一般研究B）〔筑波大地球科学系：榧根 勇〕
－ $\mathrm{A}-5]$ 植物群落の動㤰に関する研究——世界の半乾燥地域における植生回復に関する研究〔筑波大生物科学系：林 一六〕
－ A －6］土壤内塩類の除去法に関する研究（筑波大農林工学系：〇安部征雄•山口智治，清水建設〕＊土壤面蒸発によって表居に集積する塩類を土墥塭類誘檪シート により防止する方法の開発研究を行う。
－［A－7］アジア・太平洋地域のマングローヴ生態系の生物過程と制御機權（科研費海外学術調査）〈1988～90〉〔愛媛大亜学部：（）萩野和彦；筑波大農林学系：增田美砂了＊タイ・インドネシア・オーストラリア・南太平洋 を対象に，マングローヴ資源の利用パターンを類型化 し，資源消失プロセスを明らかにした。
－［A－8］シリアにおける農耕文化の展開（科研害国際学術研究）／西アジアにおける農耕文化の展開（筑波大学内プロジェクト助成研究A）〈1990～93〉〔筑波大歴史人類学系：©岩䛴卓也•西野 元•常木 晃•滝沢諴；筑波大爵林学系：中村 微；信州大理学部：赤羽貞幸；古代オリエント博：脇田重雄；早大文学部：浅野一郎〕＊乾燥地帯における農耕の出現から国家形成に至る人類の足跡を自然科学者の協力を得なからたどり，国家形成のモデルを創る。イランにおける調査〈1971～75〉 に続き，シリアにて初期腎耕跡，青鋼器時代禹跡を調査した。※月例研究会「西アジアにおける文明と环境」 － $\mathrm{A}-9]$ 乾燥地埐業における基幹展機具の適正設計に関する総合調査研究（科研费総合研究B）〈1991～〉〔筑波大輥林工学系：〇小池正之，三重大生物螸源学部：伊藤信孝，鳥取大乾燥地研：神近牧男•山本太平；岡山大農学部：黒田俊郎；千葉大園芸学部：小林達明；JICA筑波国際農業研：辻本寿之）＊（1）中国•華北および内蒙

古自治区における各種在来嘸機具（特にプラウと耕うん用機具）の設計規制因子の解明とプラウ曲面の設計パラ メータの抽出。（2）中国農書に現れる在来農機具とそれに含まれた設計規制因子のデータベース化。
－［A－10］共乾施設の計画•運営•管理のための支援 システムの開発（科研费総合研究C）〈1990～92〉（筑波大農林工学系：©瀕能誠之•小中俊雄）
－ $\mathrm{A}-11]$ 土烄水分と植物生育に関する研究（筑波実験植物園育成研：〇矢野義治〕＊土境水分嫄境の違いが植物生育の速度にどのような影響を及ぼすか，移植した樹木と天然に育ったものについて比較研究する。

【B．服林水痤省】

農林関係っなかでも熱帯農研関係の研究は数多く点䖽 されている．ここに紹介する研究以外については，本稿末尾に揭げる報告書「熱研秶料」を参考されたい。なお，熱帯懐業研究センター（熱帯䍚研）は，1993年に10月 1日より国際農林水産桠研究センターに改組した。
$-[B-1]$ 乾懆地の水利用•土壊特性の解明に関する研究〈1988～89〉（熱帯農研）＊中国・エジプトを対象と して農業立地の立場から現地調査•研究か推進された。
－［B－2］アフリカ乾燥•半乾燥地帯における草地の资源変動の解明と保全技術の開発に関する研究〈1989～ 93）（熱帯農研，農総研，草地試，国際乾燥地宸業研究セ ンター（ICARDA））＊（1）植物被覆の解析（熱帯展研：©高妞 滋•開 道生〕／（2）土地情報の解析（熱帯農研：©藤田時啓）／（3）牧畜生産システムにおける資源利用に関 する経済的諸問題の解明（带総研：©水野正已）
－ $\mathrm{B}-3$ ］アフリカの水文䍗境と櫵溉開発〔農工研（元熱帯殿研）：北村義信）＊アフリカの水资源•水収支，ナ イル河流域の水資碩•灌溉開発，西アフリカ地域の農業環境•灌漑開発について海外調査を基にとりまとめた。 －［B－4］西アフリカにおける農林業の特性解明調査〔熱帯農研：〇浜村邦夫•北村義信•沢田治雄〕＊ ジェール・マリ・コートジボアールにおいて水餈榞と灌流開発，森林問題の検討，吕業関係研究機関との交流を行った。
－［B－5］渻漢化現境の実热解明と生俍系保全技術開発 に関する調查研究〈1989～〉 ※熱帯辳業専門分野別研究会（第14回）「地球の沙漠化•塩類化を考える」〈1992．1．24〉
－［B－6］半乾燥•乾燥地域における主要畑作物の天水利用型栽培技術の開発／熱帯半乾燥地における土塆管理 およびマメ類栽培法の開発〔熱帯韔研：〇日高輝展〕
－［B－7］中国トルファンにおける夏季の気候の特徵／乾燥地における夏季高温期の蒸発散量の計測／乾燥地

における土流水分の変助〈1988～92〉（熱帯農研：○真木太一•中井 信•八田珠郎）\｛ \＃，1\}
－［B－8］浸食防止と気候綏和——中国トルファンにお ける 2 種の防風ネットによる風食防止と気象改良効果／中国トルファンの防風林による冬季の気候改良効果と作物への影畆／執燥地域の気象•蒸発散特性の解明の防風施設による風食防止の在外研究〈1988～92〉〈熱帯農

－［B－9］小型ウェィングライシメータを用いた乾燥地域における蒸発特性の把握〈1991〉〔四国農試：©林陽生，熱帯農研：真木太一〕 $\{$ \＃，1\}
－［B－10］風食地と砂丘固定地の土壤特性の比皎検討〈1988～92〉〈熱帯㖘研：○中井 信〕 $\{\#$ \＃，1\}
－［B－11］乾燥地の水動㗽，土培特性の解明〈1991～〉〔熱帯㖘研：○真木太一•中井 信•片山勝之〕＊乾燥地において農業の成立を可能にするために，気象特性•水特性•土缞特性および植物定着特性の研究を実施す る．
－［B－12］半乾燥での生態維持機機および回復機構の解明——土謷生成と植生被徰の相互関係〈1989～92〉〔熱帯農研：○八田珠郎•中井 信•真木太一〕（1）
－［B－13］荒廃した屒耕地の復元過程における植生の変化の解析〈1989～91〉〔带㻦研植生生態研：©根本正之］＊北上山地，与那国島，および内蒙古東部における過耕作•過放牧に伴う荒廃地ついて，植生の変化過程を定昷的に捉え，対策を検討した。
〈［B－14］土地荿廃問題研究会〈1991～〉〔農塄研地球 チーム：（O福原道一）※第1回シンポジゥム「地球環境と土地荒溌」〈1991．3．25〉／第2回「土地荒廃のブロ セスと農林業活動」〈1992．10．26〉／第3回「農林地にお ける土地荒若の防止対策」〈1992．12．18〉
－［B－15］熱帯林•乾燥疎林に関する技術情報の収集•分析•加工／地球環境の保全に関する森林•林業情報の収集•分析•加工〔森林総研海外林業調査科：©桶口國雄•杉本定夫］＊熱帯林業，地球䍗境（沙漠緑化•酸䧼雨など）に関する情報を各国から収集し，分類カー ドを作製するとともに，必要に応じ资料を提供する。
－［B－16］森林資源及び森林環境の解析・モニタリン グ手法の開発〔森林総研林業経営部資願計画科遠隔探査研ほか〕＊森林盗源の減少•低質化の著しい地域に適し た餈源解析のため，地上調査技術の改善，リモートセン シング技術の活用を図る。

【C．通商産業省】

－乷漠地域の気象環境の研究〔公害資獂研立地䍝境部：
北林興二ほか〕＊沙漠地域の大規模開発に伴う沙漠環

境変化の評侕手法の基礎的な研究を行う。水循珧•大気地表面相互作用に関する数値モデルを開発する。

【D．逃輸省】

－［D－1］気候モデルの関発（気象研気候研究部）＊気候系における様々な物理過程の役割を解明し，気候モデ ルを開発する。
－［D－2］地表面条件を考風した大気•地表面相互作用 の研究〔気象研応用気象研究部〕＊種々の地表面条件 （森林•草地•水田•裸地など）における乱流輸送過程 などを観測を中心に解明し，環境変化予測などを行う。

【E．建設省】

－［E－1］沙漠化防止技術開発に関する調查〈1990～ 94〉（土木研）
－［E－2］巨大プロジェクト新技術開発調査 沙漠地域環境改善調查〈1991～93〉〔土木研：©吉野文雄；国際建設技術協会〕＊沙漠地域における環境改善に関する巨大プロジェクト（アフリカ中央湖構想，サヘル地下タム計画，デザートアクアネット構想，カッタラ低地開発等）推進のために必要な技術開発に関する調査およびプロ ジェクトが環境に与えるインバクトに関する調査を行 う。
－［E－3］地球温暖化に伴う水文语環の変化に関する研究〔土木研河川部水文研〕＊温暧化影響のモニタリング としてレータ・術星・マイクロ波散乱計を用いた雨雪の観測方法の開発，温暖化が水文循環に与える影箁予測手法の研究を行う。

【F．科学技術庁】

－［F－1］沙漠化機構の解明に関する国際共同研究〈1988～〉 ※日中沙漠化機筷解明研究シンポジゥム〈1993．3．2～4〉＊中国タクラマカン沙漠を主体にした乾燥地域を対象とし下記の項目を研究する。
（1）沙漠形成史の解明（1）沙漠域，湖沼等堆䖽物の解析（日本大〕 $\{1\}$／（2）周辺氷河の解析（防災科学研）\｛3\}
（2）沙漠化の状況•変動メカニズムの解明
1）近年における地表状怒の把握と短期変動の解明 （1）地表状悲の調査（理化学研）$\{1,2\} /(2)$ 土地利用形態の調査〔理化学研〕 $\{1,2\}$
2）砂沙漢における地質形成機構の解明（1）沙漠の地質資料の鉱物学的，化学的解析（地質調査所）$\{1,2\}$／（2）沙）漠の塩類の析出•集移機莓の解明（理化学研）$\{1,2\}$
3）砂，泥等の翰送機粠の解明（1）大気中の砂塺粒子分布の測定〔通信総合研〕\｛2\}/(2)砂翰送量, 砂位変化, 砂 の粒度分布の測定（理化学研：鳥取大〕 $\{1,2\}$

4）沙漠における水文状雍の解明（1）水文状㮣，水収支 の調查〔防災科学研〕\｛1\}/(2)同位体比による水の起願の調査（理化学研）\｛1\}/(3)土壤水分と土壌水の動悲調査〔気象研〕 $\{1,2\}$
（3）沙漠と気候変化の相互作用の解明（筑波大）$\{4$ ， 5\} (1)既钼測•菩秒データの収集•解析〔通信総合研〕/ （2）大気•地表面間のエネルギー翰送過程の観測的研究， パラメータ化と局所的数値モデルの開発〔気象研〕 $\{1$ ， 2\} /(3)大気大循環モデルの高度化とシミュレーション〔気象研〕 $\{1,2\}$
（4）半乾燥地での生悲系維持機桠及び回後機權の解明（1）植物群落の調査，類型化，環境との関係の解析〔森林総研〕\｛1\}/(2)植物群落での微気象および植物生理•生態機能に関する実験および調査〔農䍗研〕（2\}/(3)士壌生成と植生被覆との相互関係の解明〔熱帯農研〕 $\{1\} /(4) 人 工$ 環境下での植物の環境耐性反応および生理生態機能の実験的解明（国立環境研〕 $\{1,2\}$
（5）沙漠化機㯷および沙漠化防止のためのシミュ レーション（1）沙漠地形変動の数値モデルの研究〔理化学研〕／（2）植物群落帯での微気象，罧境のパラメータ化〔国立噮境研〕／（3）沙漠化進行に伴う水文状態のパラメー夕化（防災科学研）／（4）気候変動に伴う生欴系の変化，水循環の変化等を関連づけるシミュレーションモデルの検討（気象研）

【G．環境庁】

－［G－1］乾燥地•半乾燥地の沙漠化に伴う環境影響予測に関する予体的研究〈1990～91〉《国立䍗境研：（）古川昭雄•宮㑸忠国•大坪國順•恒川篤史；農罧研；日本野生生物研）＊平成4年度からの本格的な沙漠化研究 のための予備的研究で，対象地域および共同研究機関の選定等について討論を行った。
－［G－2］沙漠化と人間活動の相互影響評価に関する研究〈1992～〉（1）乾燥•半乾燥地域における沙漠化に及ぼす人間活動の影響評亚に関する研究（国立環境研：宮䭲忠国；日本野生生物研〕＊インド西部タール沙漠 ジョドプール周辺を対象し，非保誮区（耕地•放牧地） と保謢区（家畜進入禁止域）に試験地を設定し下記各項目を行う。（1）各地域の植生の種組成，現存且•変化呈の測定による植生回復手法の解明。（2）水循環の流域水収支法とエネルギー収支法による推定。水資源の適正利用可能倳の推定。（3）リモートセンシングを用いた沙漠化進行状況の面的把握．（4）社会経済的な条件（人口•農業形態•放牧圧など）の調査による沙漠化の人為的要因の解明．（2）半乾燥•半湿潤地域における沙漠化に及ぼす人間活動の影鄊評価に関する研究＊中国東部を対象とし

て，自然条件および社会的条件から人間活動のインパク トによる沙漠化過程を解明し，人間活動の影響を評価す る．（1）人間活動が土地資䃇に及ぼす影亦評価に関する研究〔農㻦研：©福原道一•今川俊明〕＊耕作•放牧•定住地域を対象に，植生の破壊，土培侵食•出化，砂の集䖽等の沙漠化進行程度を植生の種類•現存畐や土淁特性の変化を指標として解明し，土地被後変化と沙漠化進行状況をリモートセンシング解析でとらえ，人間活動の沙漠化への影想を評価する。（2）沙漠化を引き起こす社会経済的要因に関する研究〔農総研：○白石和良〕＊人間活動が沙漠化の進行に及ぼす影響を社会慗造，生産経営形態，政策の変化に着目して評価する。これまで沙漠化進行地域に対して施された政策の社会経済的効果も評価 する。（3）沙漠化と人間活動の相互影響評価に関する国際比較研究〔国立環境研；都立大理学部：©門村 浩；東京大農学部：竹内和彦；京都大農学部：小畸 隆了 ＊東アジア・東南アジア・アフリカの乾燥•半乾燥•半湿閏地域における代表的沙漠化地域を対象として，沙漠化と人間活勁の相互影響評価に関する国際比皎研究を行 う。

2）学会•財団など

【日本沙漠学会】

－旦本沙漠学会沙漠工学プロジェクト〈1991～〉 ※第 1 回沙漠工学講演会〈1991．9．27〉＊世界の沙漠地域を対象とし，沙漠化防止および沙漠の気候•地形等の活用 による産業技術の開発研究と実用化を推進する。（1）自然 エネルギーの活用（理化学研：（）遠藤 悪）（2）水資獂確保〔成溪大：©小島紀徳〕／（3）有用物質生産〔電力中研：
新田義孝）／（4）快適居住環境の創造（気象研：©吉川友章〕／（5）日本に沙漠研究施設を〔清水建設：〇大野義大〕

【住友財団環境研究助成】

－沙漠緑化のための太陽熱造水と水の効率的供給•塩類化防止に関する化学工学的研究〈1992～94〉（成溪大工学部：〇小島紀徳•上宮成之；筑波大原林工学系：〇安部征雄•山口智治〕＊乾燥地域全般について，次の各項目を行う。（1）造水水分等の物質移動現象，保水剤に関 する文献調査。（2）太晹熱利用簡易造水システムの評価•実験。（3）塩害化地域の塩分•水分移動シミュレーション実験とモデル化．（4）適切な程水上昇防止法，リーモング法，塩分捕集法．給水法の提案。（5）エネルギー生産•灌水•植林•給水除塩システムの具体案の提出•評価。

3．おわりに

広範にわたる当該研究について全体を網羅することは至難の技で，本稿には不備な箇所が少なからず残されてい ると思われる。それらを今後補っていくために，記载も れの関連研究についてこ教示いただければ幸いである。
ともあれ上述のように，沙漠と沙漠化に関する学際的•国際的研究が地道に推進されつつある。本資料が縦割り行政にとらわれないプロジェクトの連㘯•発展のた めに何らかのかたちで役立つことを願ってむすびとす る。

謝 辞

本移の執筆にあたりご協力を賜った関係各位に深く御礼申し上げます。また，報告の機会を与えてくださった舞業珢境技術研究所环境管理部咨源环境動妼研究室の桍田共之室畏（当シンボ ジゥム幹耳）に感㖣いたします。

参考文献

泜村邦夫•北村淒信•沢田治雄（1992）：「西アフリカにおける農林業の特性解明調查報告荘——ニジェール・マリ・コートジ ポアール」熟研资料，88： 57 p．
今泉英太郎•及川梀雄（1991）：「北アフリカにおける農桨及び羅業研究の実恏澗査—エジブト・チュニジア・モロッコ・イ キリス」釛研资料．82： 110 p ．
岩田文男•笹野伸治•長野聞宏（1986）：「施燥地越業の研究事情調查報告葆——シリア・バキスタン・インド」懸研资料，68： 63 p ．
海外学術調查に関する総合調査研究班（1985）：「海外学術調查コ ロキアム「乾燥•半乾燥地帯の带業——その伝統と変容」： 227 p．
科学技術帄研究開発局（1992）：「沙漠化機横の解明に関する国際共同研究 平成 3 年度 成果報告作」： 414 p ．

环境庁企面調整局地球嫄境部嫄境保全対策課咞究调查室 （1992）：「平成 3 年度地球玷境研究総合推進然研究成果報告留 （II）」：251－254．
环境庁国立环境研（1991）：「第2回地球环境研究者交流会棫報告䒸」： 90 p ．
 89： 88 p ．
御子柴明夫（1989）：「ラテンアメリカにおける自然条件と震業類型の関速——コロンビア・ボリビア調査報告茿」熱研咨料。 77： 86 p ．
 ネガル・フルキナフォソ・コートジボアール・ニジェール・ マリ」熱研资料，87： 97 p．
 る丘要研究問題とその背景」熱研咨料．86： 58 p．
带林水産省熟帯農業センター（1986）：「乾煤地農業研究加情調査報告——オランタ・エジプト・ケニア・シリア・エチオビア」熱研资料，69： 58 p ．
報告——オーストラリア」熱研资料，72： 46 p．
震林水産省熟帯带業センター（1990）：「熟帯農研集報，68，㓣立 20 周年記念特集号」： 161 p ．
野䗁倫夫（1990）：「東アフリカの展業および農業研究調査——サ ンビア・マダカスカル」熱研资料，80：55 p．
 ——エジプト・イスラエル」軗研疼料，71： 56 p．
笹野伸治（1991）：「西アフリカ水田地帯における潄滧排水技術の実憵調査—カメルーン・コートジボアール・リベリア」熱研盗料，81： 39 p ．
筑波研究学園都市研究機関等連絡協談会（1989，1991）：「筑波研究学園都市研究使質」平成元年版； 3 年度版： $877 \mathrm{p} . ; 1091 \mathrm{p}$ ．筑波大学企面調查室（1992）：「筑波大学年次報告雷（平成 3 年度版）」： 324 p．
土屋暗男•今泉英太郎（1989）：「東アフリカの展桨及び带業研究調査——イタリア・エチオビア・スータン・フランス」軗研资料，76： 65 p ．
米谷佰春（1992）：「矿谟化機群の解明に関する国崉共同研究につ いて」 気候影響•利用研究会会報，8：44－49．

中国の沙漠の気候と生活 ${ }^{\dagger}$

杜 明 遠＊
Climate and Living of Chinese Deserts

Mingyuan Du＊

1．まえがき

著者は中国の沙漠地域の青蔵（チペット）高原の北部 にある柴達木盆地で育ってきた。中国の沙漠は砂沙漠と磜沙漠（戈壁）が大部分をしめている。大きな特徵は，西部の沙漠は盆地であり，東部のは高原である，両者の間に河西回廊が位置している。それも標髙 $1,000 \mathrm{~m}$ 以上 である。盆地の分布は北から南へ准噶雰盆地，吐魯番盆地，塔里木盆地，柴達木盆地が位置している。地形に対 して中国の沙漠の気候も盆地と高原の特徵を持ってい る．本稿は中国沙漠の気候と生活を概観して紹介する。

2．中国の沙漠の気候

1）降水量•水不足量の分布

中国の沙漠における年平均降水用の分布（耿，1986） は，北西方での年降水盟が 50 mm ，全般に 100 mm 以下のところが広い。 200 mm を超す地域は天山山脈と阿爾泰山脈だけである．そのなかで 500 mm を超す地点 がある．盆地の年降水孟は北の准喝爾盆地を除いてほと んどの地域で 50 mm 以下である。なかでも吐售番盆地 は極端に降水畧が少なく，昍魯番では 16.6 mm である。
しかし，盆地の中心部における降水䡒はほとんど推定の ものである．タクラマカン沙漠のなかの $40^{\circ} 06^{\prime} \mathrm{N}$ ， $83^{\circ} 06^{\prime} \mathrm{E}, 987 \mathrm{~m}$ の地点（北縁に近いところ）で 1988 年 に钼測した結果， 50 mm を超して周辺より多かった （李，1990）中国の沙漠の大部分の地城では雨は夏に集中し，暖候季（6月－9月）の降水量の分布は全般的に年降水㚗の分布とほぼ一致している。

中国の水不足量（降水姐と最大可能蒸発旦の差）の分布と区分について，気候•水資源および農業への影㱞の立場から調べた（候•杜ほか，1987）。中国の北西方で の年の水不足㝵が 800 mm ，全般に $1,200 \mathrm{~mm}$ に達する

ところが広い。盆地の年の水不足買はほとんどの地域で $1,200 \mathrm{~mm}$ に達する．特に北の准蟼爾盆地では降水是か ほかの盆地より多いが，夏の水不足量は大きいため，年 の水不足玨はほかの盆地と一致している。水不足の季節変化はほとんどの地域で春から夏にかけてであり，水不足舟は 600 mm に逵する。

2）各地の気温•降水量•蒸発量

中国の沙漠地域の 6 地点（准落爾盆地の阿勒泰，吐魯番盆地の吐魯番，塔里木盆地の和田，柴達木盆地の格雨木，河西回廊の張掖，東部高原の朱日和）の月平均気温 （平均，最高，最低），降水盀と蒸発量を図 1 に示す。各地の気温•降水舟•蒸発舟は以下の特徵がある。
（1）気温
盆地と高原に位置し，しかも沙漠としては高綼度であ る中国の沙漠の気候的特徵は冬の気温が低く，年較差が大きいことと日皎差も大きいことである．准篤雨盆地の阿勒泰では冬の 3 力月（ 12 月， 1 月， 2 月）ほど平均最低気温が $-20^{\circ} \mathrm{C}$ 以下になり，夏（ 6 月， 7 月， 8 月）の平均最高気温が $26^{\circ} \mathrm{C}$ を超している。 6 地点の年較差は格爾木で小さく， $28.5^{\circ} \mathrm{C}$ であり，ほかの 5 地点全部は $30^{\circ} \mathrm{C}$ を超している。吐魯番は曼あ大きい $42.2^{\circ} \mathrm{C}$ であ る．年平均日皎差は 6 地点と $62^{\circ} \mathrm{C}$ を超している。高原盆地の格爾木と河西回嫏の張掖で最も大きく， $15.7^{\circ} \mathrm{C}$ に達する。

塔里木盆地から吐魯番盆地にかけては，中国乾燥地域 としては気温が最も高く，年平均気温が北の准嘫爾盆地 の阿勒泰で $4.0^{\circ} \mathrm{C}$ ，南の柴達木盆地の格爾木で $4.2^{\circ} \mathrm{C}$ ，内蒙古の朱日和で $4.4^{\circ} \mathrm{C}$ と間の河西回廍の張掖で $7.0^{\circ} \mathrm{C}$ で あるのに対し，この地域では和田で $12.2^{\circ} \mathrm{C}$ ，吐魯番で $13.9^{\circ} \mathrm{C}$ である．特に標高の低い吐畧番で 7 月の平均気温は $32.7^{\circ} \mathrm{C}$ であり，平均訾高気温は $39.9^{\circ} \mathrm{C}$ である。 1992年6月26日－7月2日の1週間の平均最高気温で は， $46.3^{\circ} \mathrm{C}$ を記録した。砂丘の斜面で赤外線放射温度計

[^11]

図 1．中国の沙漠の代表的地点の気温，降水量と蒸発量．

で測定した地表面温度は $84.7^{\circ} \mathrm{C}$ を記録した。それに対 し，標高が $2,800 \mathrm{~m}$ 高い柴達木盆地の格爾木では 7 月 の平均気温は $17.6^{\circ} \mathrm{C}$ ，平均最高気温は $24.9^{\circ} \mathrm{C}$ である。
（2）降水
内陸に位置している中国の沙漠の特徴は，先ほど述べ たように降水量は非常に少ないことと降水が夏に集中す ることである。 しかし北西部が開いている准噶爾盆地

は，この方向からの風がもたらす降水もあるため，ほか の盆地ほど夏季に片寄っておらず降水量は多い。河西回廊と東の高原では降水量は西の盆地より多い。冬の降水量がほとんどない。最も降水の少ない昍魯番では 2 月の降水量を見ると 10 年に 1 回くらいしか降らない。しか し，吐魯番では今までの最大積雪は 17 cm であり，降水量が少ないことを考えると非常に大きい値である。

図 2．中国の沙漠の7月降水逆の経年変化（1951－ 1991年）。
Rm は 7 月の 40 年平均降水用．

（3）蒸発

小型蒸発計で測った結果，中国沙漠地域の蒸発量は $1,800 \mathrm{~mm}$／年から $2,800 \mathrm{~mm} /$ 年であり，降水周の 10 倍 から 150 倍になっている．特に，夏に張掖を除いて月の蒸発量は 300 mm に達する。吐鲁番では1日の蒸発量 は 30 mm を超す場合もある。東部の朱日和と張掖の蒸発皿は，西部の 4 つの盆地で 7 月が一番多いのに対し， 5月に一番多い。

3）降水の特徵

沙漠地域に生活すると降水が少ないというより，洪水 が多いと感じるかもしれない。中国の沙漠の日最大降水量は年平均降水䦎とほぼ同じ値か，年平均降水皿より大 きい。沙漠では雨は少ないが，洪水はたまに降る雨が少 し多めに降るたびに発生する。7月の降水量の経年変化 （図2）と1979年夏（6月，7月，8月）の日降水䡒の時系列（図3）を出してみると，中国沙漠の降水は以下の特徵がある。

1．降水典は少なくなるほど，降水の変動率は大きく

図 3．中国の沙漠の夏の降水用の時間変化（1979年）
Rm6，Rm7，Rm8 は6，7，8月の40年平均降水投。

なる．
2．各地の降水皿の経年変化は一致せず，局地の特徴 を持つ。
3．月降水用は少なくなるほど，日降水助の割合は大 きくなる。

4．雨が降りそうな日（降水且はないが，雨が確かに降った日）は相当多い，大気中の水蒸気は少ない。

4）オアシスの気候

中国沙漠地域における気象観測所はほとんどオアシス の中か周辺にあるため，以上述べた気候特微はオアシス の影響が多少ある．孫（1990）と凌（1990）は，大量水の灌溉によるオアシスでは温度か低く，湿度が高いと降水日数と降水量も多いと報告した。また，中国の沙漠地域 におけるオアシスの倀業を行なうには，必ず防風施設か必要である。防風施設がないと豦業ができないと言われ ている．杜ほかの研究（Du and MAKı，1993；Makı and Du，1993）によると，オアシス内の風速は約 50% 弱く なり，臬と日中の気温と地温は低くなり，冬と夜の気温

と地温は高くなり，日変化と季節変化は小さくなる。防風林は気象要䋈および作物の成長に大きく影響を及ぼ す。

3．中国の沙莫の生活

1）荘集・オアシス

気候の部分で述へなかったか，中国の沙漠地域の日射量と日照時間は非常に大きな値を示し，温度条件，太晹放射の面からは極めて恵まれている。水さえあれば作物等にはよい環境である。従って，中国の沙漠地域のオア シスの開発は古い歴史を持っている。中華人民共和国の成立後，中国の沙漠地域では重要な食椎生産基地として数十個所の農場や牧場を開発した。オアシスの農業はほ とんど灌溉農業であり，展産物の単位面程の生産皿が高 く品質も良い。例えば，標高 $2,800 \mathrm{~m}$ の柴達木盆地の香日徳農場では，1976年に単位面棲の春小麦の収糟高か $15,195 \mathrm{~kg} / \mathrm{ha}$ にも達した。その他に，中国沙漠地域の果物（メロン・西瓜•蒱萄）や，綿なども有名である。

しかし，オアシスの開発後，自然珧境の変化や人為に よる斎漠化などにより，移動砂丘の下になったり，塩類 の集㮐がすすみ放盍された耕地も多くみられた。例え ば，中華人民共和国の成立後，塔里木盆地のタリム川に沿い，塩分を含む湿地とタマリスクのはえている砂丘が開発の対象となり，1970年代末までに12万ha以上の農地か開発された。開発がすすむとともに，河川水に含 まれる塩分が $2 \sim 3$ 倍に增加した。また， $6 \sim 8 \mathrm{~m}$ あった地下水位が 2 m 前後まで上昇しているところが広くみ られ，耕地の悪化に対する対策が求められている。

2）牧栄•遊牧

中国の沙漠地域での主な人間生活は，農耕が不可能な ほど乾燥したところ，または寒冷なところの遊牧であ る．家畜は羊が多く，ラクタ，牛，馬などである。遊牧 のルートは季節によってほぼ決まっており，山地地帯で は冬季を山桃ですごし，桨には高所へ移動する。また，秋に収櫒後約 1 カ月間オアシスで放牧することもある。冬季の放牧場には比較的人口が集中し，買物や人間交流 が多く，オアシスの農民と物の交換も行なう。例えば，家畜の追と麦などの㩰の交換がよくみられる。遊牠民の生活必需品はほとんど畜産品である，主要食料は乳と乳製品であり，肉もよく食べる。狡物の消費は農民の三分 の一以下である。着るものあ毛皮が多い。農民と比べて生活が鎧かである。しかし，過放牧による沙漠化の問題 か強まっている。

3）日常生活

気候に対して中国の沙漠の生活は大きな特徴がある。中国語の一言で言えば，＂早穿綿襖，中穿紗；抱着火炉，吃西瓜。＂である．意味は，朝は（寒いから）綿入れの着物を着ているのに，昼は（暑過ぎるから）綿糸の単物だ けでいい；ストーブを付けてから西瓜を食べる（秋の直後に真冬になるため，秋の西瓜を食べきれない内に冬に なるから，または眝藏し易いから冬に食べる）。日常生活 は，人間が少ないと経済が不発達のため，非常に単純で ある．特に水と燃料不足のため，生活は苦しいところか多い。例えば，著者が育った柴達木盆地では，冬に川が凁結し水の流れが止まるので，池を造り，凍る前に水を一杯溜めて，冬に東った水を飲用水に利用するところが ある．水（水）の制限があるため，水から解けた水は直接飲用，或は飲飯するほか，余り使用しない。野菜と米 などを洗う時使った水は，沈殿させてから食器を洗う。 そして熶後に家畜の食に使う。また，燃料を用意するの も一苦労の日常生活内容である。遠いところで，僅かな少ない木を伐採したり，灌木と草の根と家畜の荘を使っ たりするのがほとんどである。しかし，これは沙漠化の問題になっている。

4）沙漠の開発

先に述べたように中華人民共和国の成立後，中国の竗漠地域では重要な食鋉生産基地として数十個所の農場や牧場を開発したが最近の十数年間，特に狚近の5年間，石油の開発が行なわれている。沙漠のなかに石油がある と言えるくらい，油田が次々と発見された。1992年に准噶爾盆地と塔里木盆地と昍魯番盆地の 3 つの盆地で の原油の生産量は 877 万トンであり，天然ガスの生産是 は 7 億立方メートルであった。油田の開発に伴ういろい ろな施設も建設しはじめた。例えば，塔里木盆地のタク ラマカン沙漠の真ん中の石油の開発のため，タクラマカ ン沙漠の南北緥断の道路を造り始めている。石油の開発 に野菜等を提供するため，タクラマカン沙漠の真ん中で オアシスを作ろうとも呼びかけている。しかし，道路や オアシスが砂に埋まる可能性が高いので，どのように保護するかは問題がある。

また，沙漠を観光資源として，シルクロードを含めて観光施設の整備などが流行っている。観光客も毎年増え ている。

4．あとがき

著者は沙漠地域で育ってきたが，沙漠に真の関心を持 ち始めたのは，日本科学技術庁特別奨学金をうけた

1991年である．1991年12月と1992年8月の2回，中国の沙漠に調査に行った。読者の皆様に御参考になれ ば，また御批判をいただければ幸いである。

引用文献

耿 宽宏（1986）：「中国沙区的気候」中国科学出版社．
候 光良•杜 明遠ほか（1988）：中国における水収支国の区分。「中国農業気象」9：157－164．
孫 様淋（1990）：タリム盆地の気侯特微，李 江風主編：「中国朝㙅地域における気候，珼境及び地域開発研究」中国気象出版社：131－135．
「中国軼燥地城における気侯，环境及び地域開発所究」中国気象出版社：122－125．
淩 正州（1990）：タリム川阿拉條地区における気侯変化の比较分析．李 江風主編「中国乾燥地域における気候，珼境及び地枝開発研究」中国気象出版社：136－139．
Du，M．and Makı，T．（1993）：Climatic differences between an oasis and its marginal area in Turpan，Xinjiang，China．In Proc．of the Japan－China Joint Research Conference on Envir－ omental Resources．TARC：110－117．
Maki，T．and Du．M．（1993）：The effect of windbreaks on meteorological improvement and the prevention of wind erosion．J．Agr．Met．，48：683－686．

植生からみた中国における沙漠化の現状 ${ }^{\dagger}$

根 本 正 之＊

Recent Situation of Desertification in China from the Viewpoint of Vegetation Changes

Masayuki Nemoto＊

1．はじめに

アフリカ・サヘル地域の大早魅を契機として， 1977年ヶニアのナイロビで国連砂漠化防止会諼が開催され，「沙漠化」は世界の重大関心事となった。しかしなからそ れ以降も沙漠化は世界の各地で進行し続け，いまや地球的規模の嫄境問題となるに至った。隣国の中国でもその全土にわたって沙漠化現象が発生し，深刻化している。

ところで「沙漠化」とは何であろうか，世界各地で発生していると言われる沙漠化現象は多岥にわたっていた ためか，1977年のナイロビでの沙漠化の定義は＂土地 の持つ生物生産力の減退ないし破壊であり，終局的には沙漠のような状悲をもたらず という非常に㖟昧なもの であった。これを反映して，現在では 100 以上もの異な る沙漠化の定義があるという（BARROW，1991）．このよう な混乱を避けるため，1991年国連珧境計画（UNEP）は沙漠化／土地荒廃（Desertification／Land Degradation） を＂不適切な人間活動による乾燥•半軲燥ならびに乾性半湿閵地域における土地の荒廃現象＂と定義した（根本 ほか，1992）。また中国においては閪州沙漠研究所の朱震達によって＂脆弱な生態的状況下における人間活動 と，資源の利用と既境との不均衡によってもたらされる環境退化の過程＂が沙漠化であると定義された（NEмото and $\mathrm{Lu}, 1992$ ）．
本論文の主題である植生からみた場合，沙漠化をどの ようにとらえるのが適切なのであろうか，生態学では ＂植物が自然景钼の中心とならない群系＂を広義の沙漠 と定義しているから（伊藤，1976），乾燥から乾性半湿潤地域までの範囲で，人間活動によって植生かなくなる過程が沙漠化で，植生がなくなってしまった場所を沙漠化土地とすれば上述の定義と矛盾しないだろう．タクラ マカン沙漠等，気候的な沙漠は人間が関与して形成され たものではないから沙漠化土地ではない。そこでまず，

沙漠化する前の中国各地に本来あるべきはずの植生の既略から述べていきたい。

2．中国の植生

中国の植生は嘅略，図1に示すとおり，次の1）から 8）までの植生帯に分類することができる（林，1990） すなわち，
1）亜寒帯針葉森林帯
2）温帯針広混交林帯
3）冷温帯夏緑広葉樹林帯
4）暖温帯常緑広葉樹林帯
5）亜熱帯季節林帯
6）温帯草原地帯
7）温帯半沙漠（荒漠）地帯
8）チペット高原寒冷地植生帯
中国東部地域の潜在自然植生は北から南まで柎林帯に属 している．しかしなから文明発样の地であり，人口密度 の極めて高いこの地域の低地にはほとんど自然林はな い．特に1950年代の大罷進連動，1960～1970年代の文化大革命で森林は著しく破壊された（日経新聞， 1990．12．28）．
1）はLarix 属か俊占する落葉性の針葉澍と Picea 属 からなる常緑針葉柎林帯であるかっここか中国で唯一，沙漠化の影響を受けていない植生帯である。
2）は針葉榚と広葉樹が混じる森林地帯で朝鲜半島北部まで広がっている。この地帯の東部地域には多くの自然林か残存しているか，西部地域は春播き小麦を主体と する㚼作地帯で，森林はほとんどか植林地かか防謢林であ る．沙漠化土地も分布している。
3）はミスナラの仲間（Quercus属）が侵占し，それに Acer（カエデ），Tilia（シナノキ），Ulmus（ニレ）など を含む樹林である。この地帯にはほとんど自然林は存在 せず，冬播き小麦を主体とする耕作地かな広く分布してい

[^12]

図 1．中国の植生分布の概要．（林，1990を一部改変）

図 2．中国北部の沙漠および沙漠化土地の分布．（UNEP， 1992 を一部改変）

る．黄土高原東部地域や黄河の旧河川敷等は沙漠化の危険性が極めて高い。

4）の暖温帯常緑広葉樹林帯は中国全土の $1 / 4$ を占め， シイ，カシ，クスノキの仲間が多い。山岳地帯には自然林も残存しているが，平野部は水田地帯となっている。乱伐の結果，著しい水土流失を引き起こし，沙漠化した山岳地帯が斑点状に分布している。
5）は雲南省，広西壮族自治区の南部をかすめ，海南省 に分布する。僅かではあるが水土流失による沙漠化土地 が分布する。

中国西部地域の6）～8）の地帯では降水量が少なく森

林は成立しない。そのため草原を利用した牧音が農業の主体となっている．6）の温帯草原は乾燥が原因で樹木が成育できない半乾燥地である。草原地帯の東部域は Betula 属の木の散生する Aneurolepidium やStipa 等の イネ科草原となっている。一方，南部域ではStipa 属と ヨモギ属が多くなっている。中国ではこの地帯における沙漠化が最も深刻である。

7）の地帯は天山山脈を除けば，ほとんどか年間降水量 200 mm 以下で，タクラマカン，バダインジャラン，グ ルバンチュンギュト等の沙漠が分布している。沙漠以外 の場所は矮半灌木荒漠や灌木荒漠になっている。また沙

図 3．中国南部の主として水食に起因する沙漠化土地の分布．（UNEP， 1992 を一部改変）

漠の周辺部分には沙漠化土地も分布している。
8）は東から針葉樹林帯，低木草原地帯，高地寒冷草原 および温暖性半沙漠の 4 つに区分できる。チベット高原 は人口密度が低く，さほど沙漠化は進行していない。

3．中国の沙漠化土地

中国の沙漠化した土地とその危険性をはらむ地域は，沙漠化をもたらす自然的要因である風食あるいは水食のい ずれが大きく関与しているかで2つの地帯に分けるこ とができる（ZHU and WANG，1993），沙漠化が主に風食 によって進行しているのは北部の温帯草原と温帯半沙漠地帯である。そこには約 17 万 km^{2} の沙漠化土地が分布 し，また潜在的沙漠化土地も 16 万 km^{2} あり，併せて 3 3 万 km^{2} が沙漠化と係わりを持っている（図2）。

一方，黄土高原と湿潤な南部の山岳地帯では主に水食 によって沙漠化した地域が多い。前者では 43 万 km^{2} が沙漠化したと言われている。後者は水土流失の結果，表土が失われ植生の回復が困難となった土地を指すが，ど こまでを沙漠化土地とするのか意見の分かれるところで ある（図3）。

1）周食による沙漠化

東経 105° 以西の温帯半沙漠地帯では，沙漠化した砂地が主として（1）上流地域での灌溉で干上がってしまった内陸川の下流域と，（2）植生の破壊が，固定していた砂丘 の再活動を誘発したオアシスの周刀部に分布している。東経 105° 以東の草原地帯には中国北部で沙漠化した面

積の $2 / 3$ が集中的に分布し，それらは景観的に次の 3 つのタイプに分けることができる，すなわち（1）沙地草原 での過耕作に基づく沙漠化土地。このタイプの事例とし て内蒙古奈曼旗の沙漠化について後述する。（2）磜地と沙地での過放牧による沙漠化土地，および（3）固定していた第四紀砂丘地帯での過耕作，過放牧および乱伐に伴う砂丘の再活動地帯である。

また風食によって沙漠化する危険性があると言われて いる土地は，半乾燥地と半湿潤地域で畜産が広く行なわ れている場所である。すなわち（1）半乾燥地の過放牧が照念される牧区の井戸の周辺や，（2）半湿潤地域の砂が吹き だまった場所，例えば長江の中流域や海岸平原などであ る。

2）水食による沙漠化

水食による沙漠化は図3に示したとおり，主として黄土地域にある黄河の中流域，中国北東部の丘陵地域およ び中国南西部の山岳地域である。これらの地域は賏観的 に4つのタイプに分けることができる。すなわち，（1）半乾燥および半湿潤黄土高原における水食によって形成さ れた尾根部と荒漠地，（2）湿潤地の花崗岩とラテライトを母材とする場所で水土流失の結果できた荒漠詈観，（3）石灰岩地帯の山地帯で水食の結果生じた岩沙漠状景観，お よび（4）湿澗地で山地帯より流出してきた岩石の砕片が谷床に堆積した礫沙漠状㝵観である。

図 4．過放牧によって流動化しつつある砂丘の Artemisia halodendron（白ヌキの部分）を優占種とする群落（a）および丘間低地のヨシ （白又キの部分）群落（b）の生産構造。

4．沙莫化の現状，その事例

第3章では中国における沙漠化の概況についてその自然的要因別に述べてきた。次に本章では，その現状に ついて私達が，科学技術庁の国際共同研究である「砂漠化機構の解明に関する研究」の一環として，内蒙古自治区奈曼旗と浙江省常山でこれまで行なってきた調査•研究の結果をふまえて，もう少し具体的に述べてみたい。

1）過放牧による沙漠化

内蒙古の奈曼旗には砂丘地帯と平坦な沙地草原が分布 するが，両者で沙漠化した土地が拡大している。特に砂丘地帯が沙漠化すると特徴的な景観を示す（根本ほか， 1992）．

図 5．流動化しつつある砂丘の中間部分にみられ た Artemisia halodendron パッチ内個体の分散図（下図）と，そこに生育していたAs－ tragalus adsurgens の現存量（棒グラフ）お よび生殖器官を付けた個体数の推移（上図）。上図の値は下図の各地点に対応する。一辺の長さ 5 m の正方形ワク内の分散を示す。

奈曼旗は平均年降水量が 370 mm の半乾燥地帯で （原蘭，1992），6月から8月に集中的に降雨がみられる ことと，夏季は砂丘地の地下水位が高いため，丘間低地 には季節的な沼ができる。そこに分布する植生は，家畜 の影響がない場所でも砂丘の上と下では著しく異なって いる．上部は耐乾性のある多年生の Artemisia haloden－ dron が優占，中間部分にはイネ科の Calamagrostis や固定砂丘の指標植物である Artemisia frigida が優占，下部の沼周辺部にはスゲ類が，沼の中にはヨシやガマが優占している。しかし降水量の年変動が非常に大きいた め（原薗，1992），ヨシやガマの生育地点は必ずしも毎年滞水しているわけではない。ヨシは純群落を形成せ ず，トクサ類，ヤナギ類，Setalia viridis 等が混在してい る（図 $4, \mathrm{~b}$ のアミの部分）。

上述した砂丘植生は，家畜の放牧圧が高まると上部か ら次第に裸地化してくる。しかし下部は，相当過放牧に なっても家畜が契食しないスゲ類やオオバコ類が残存す る．中間部分は図 5 に示すとおり，A．halodendron の株 が散生するようになる．A．halodendron の葉は独特の臭気があるので家畜は喫食せず，この種が選択的に食い残

図 6．A．halodendron の成体数と A．adsurgens の個体数（a）および A．halodendron の芽ば えの数（b）との関係
（a）：$y=-0.12+1.13 x, \quad r=0.92$
（b）：$y=23.56+4.19 x, \quad r=0.45$

されるためである．もっとも冬季になると狊気がぬける ので，飼草がない場合はヤギやメン羊が喫食する。 A ． halodendron のバッチ状群落内では，上部が食われて矮小化したマメ科の Astragalus adsurgens がみられる。 A．adsurgens の草高は通例 1 m 近くまで伸びるが， パッチ内では 20 cm 以下であった。 A．halodendronの成体が多い地点ほど A．adsurgens の個体が多いが，A． halodendron の成体とその芽ばえの分布には必ずしも相関は認められなかった（図6）。群落内の A．adsurgens の現存昷の推移を図5の上に示したか，A．adsurgens は土㜔の水分条件がよくないと生育できないので，砂丘の上部に向かうほど開花するような大きな個体は減少す る。

砂丘上部の裸地には，時に短命植物の沙米（Agriophy－ llum squarrosum）が群落を形成する．沙米は根を地下深 くまで伸ばすが，極めて細く，T / R 比が非常に大きい （Nемото and Lu，1992）．

奈曼旗では砂丘が裸地化し，流動砂丘となった場合で あ沙米が群落を形成する場合がある。しかし，このよう な場所では，沙米の固砂能力が小さいために禁牧して も，植生の回復は困難であろう。一方，A．halodendron の株か散在していれば，その周辺部からの植生回復は可能であり，現地の農民は流動化した砂丘に積極的に A ． halodendron を植栽している。

一方，沙地草原でも放牧圧が高まれば砂丘地同様，沙漠化が進展する。私達は日中共同の研究課題として， 1992年5月より過放牧による沙漠化過程を定鲳的に把握するため，メン羊を供試した放牧試験を奈显旗の沙地草原で開始した。1．5 ha 当たりのメン羊頭数をそれぞれ 0 頭（対照区）， 5 頭（軽放牧区）， 7 頭（中放牧区）， 10頭（重放牧区）とし，放牧頭数の连いが植生に及ぼす㷧帮を解析している。約3カ月経過した 8 月下旬に調査を行なったが，この時点で重放牧区にはかなりの裸地が出現し，野草の草高と現存妵が著しく減少した。草高はメ ン羊による喫食と，その踏みつけによって低くなる。ま た簬出した砂の表面は踏みつけによって凹凸が目立って くる．一方，メン羊の影響を排除した対照区の植生は回復に向かっているが，本試験では一切，施肥管理を行 なっていないため，予想した程は回復していない。試験中の牧区で優占する草はイネ科の多年草であるPenni－ setum sp．や Aristida sp．と一年生草本の Digitaria sp． や Setaria sp．であった．イネ科草本はおしなべてメン羊の暗好性がよいが，なかであ一年生イネ科草本を好ん で喫食した。

砂丘地や沙地草原で放牧家畜の頭数が增加してくる と，イネ科を主体とする飼草の再生が追いつかなくな り，上述したとおり，その植被率と現存量か低下してく る．一方，家畜の㖺好性に劣る Artemisia や Allium 屈植物あるいは毒草であるPotentilla sp．が增加してくる。 さらに頭数が增加すれば嗜好性の悪い草種も消蔵し，裸地化が促進される。このようにして，ほとんど裸地化し た砂地は流動化しやすく，植生の回復が極めて困難な沙漠化土地となる。

2）過耕作がもたらす沙漠化

奈晏旗を含むホルチン沙地では，潩った耕作によって も沙漠化土地が拡大している。しかし植生からみた詳し い調査はほとんどなされていない。そこで 1992 年度の日中共同研究の課題として，聞州沙漠研究所奈受沙漠化研究站の近くにある漠族の集村である東北戸と爸勒甸子 において，過耕作に係わる沙漠化の実体を明らかにする ためのアンケート調査と植生調査を行なった。奈曼旗に は清時代に遼東招民開檠令が出された頃より漠族が移民 してきたという。

各村の耕作地は行政的に口粮田と出任田に分かれてい る．前者は農民各自が生きていくための食柦を生産する のに必要な耕作地である。中国の罡民は自分の食いぶち は自ら生産しなければならないからである。後者の革任田は口粮田を確保してもなお土地に余裕のある場合，村 が農民達に貸与する目的で作った耕作地であり，いくつ

かの等級に分かれている。
上述の 2 つの村では買任田を 5 階級に分け， 1 級地は $80 ~ 100$ 元／畝（ムー）／年で貸与している． 1 畝は約 6．7aに相当する面程である。階級が低いほど借地料は安 くなり，例えば 5 級地は 30～50元／畝／年である。沙地草原は草原法によって開発が禁止されているはずだが， ここでは沙地草原を等外地として僅か 10 元／畋／年で貸与している。何年間も充分な施肥を行なわず耕作し て，等級の下がった貴任田や初めから生産力の著しく低 い沙地草原での耕作が，沙漠化の引き金になっているよ うに思える。
私達はまず耕作地を1）灌溉㚼，2）天水畑，3）放棄直前の天水㚼および 4）㚼放棄地に分け，そこでの作物と雑草の生育状態を調査した。

土壤条件のよい場所は灌溉し，化成肥料と有機物を施用，除草を行なってトゥモロコシを栽培し，比較的高収䦎を得ている。このような耕作地は集落の比較的近くに分布している。例えば堯勒甸子の灌兓畑では1畋当たり 25 kg の尿素と $1,000 \mathrm{~kg}$ の緑肥を施用，トウモロコシ を 4,000 株／畋の密植で植栽し， 5 月上旬， 6 月上旬およ び 8 月下旬の 3 回の灌溉と年 3 回の除草で約
 コシのみならず春播小麦も作付する。この場合は麦を収櫒後，ソバを栽培するのが通例である。

一方，土壌条件の悪い沙地草原などでは防風林を植载 することもなく，灌溉もせず，簡単に耕起して僅かばか りの化成肥料を施用し，コーリャン，キビ，ソバ，緑豆等を栽培， $3 \sim 4$ 年で放棄してしまう。例えば， 5 級地に おけるキビと緑豆の収畳はそれぞれ $40 \mathrm{~kg} /$ 畋， $25 \mathrm{~kg} /$畝と極めて少ない。このような畑でも通常除草するか，沙漠化防止の観点からはむしろ好ましくない。雑草は畑 から持ち去ることなく，除草剤で枯死させ，作物も刈株
 にくいので表土の流亡はだいぶ防げるだろう。しかし現実には畋間をプラウによって除草している，そのため放裹畑の歆跡と詎間に発生した雑草量は，前者の平均が $468 \mathrm{~g} / \mathrm{m}^{2}$ であったのに対し，後者は㮖か $68 \mathrm{~g} / \mathrm{m}^{2}$ に過 ぎなかった。

耕作地における雑草発生舟は同様に年3回除草した場合でも潅溉畑が多く，そこでトゥモロコシを栽培した場合，侵入雑草の平均植被率は 28.3% であった。一方生産力の低い天水㚼のそれは水分条件が悪く，肥えていな いためか，僅か 5．7\％であった。

放棄畑で土塆表面に何も生えていないと，過放牧地と同様，風食によって表土が飛散し，下屈部の硬い局が露出してくる場合がある。1992年に放棄したばかりの場

所での雑草の平均植被率は 38.1% であったが，表土が失われていない 1990 年に放棄した㚼の平均植被率は 79% まで回復していた。それに対し，硬い層か露出して しまった場合は僅か 13.8% であった。㚼放棄後時間が たつにつれ，マメ科の多年生草 Lespedesa bicolor や家畜の喫食しない Xanthium mongolium 等が優占してく る．一方，硬い菌の場所ではハマビシなど生育型が陣地拡大型の雑草が目立つようになる。

耕作とは直接関係ないが，甘草など楽草となる植物の堀り取りをしばしばみかける。これも植生破壊に寄与し ていると思われる．

3）水土流出の結果としての沙漠化

上述した中国北東部の内蒙古自治区奈莡旗は半乾燥地 であり，沙漠化土地拡大の主な自然的要因は春季の強風 によるものである。一方，中国南部の湿潤地域に位监す る浙江省常山県での沙漠化土地拡大は主として水土流失 に起因するものである。1958年以降，大躍進運動のた め製鉄用の燃料として松を盛んに伐採，また1966年に始まった文化大革命当時の乱伐，さらには睘民による家庭用燃料としてのマキの取り過ぎと丘陵地の肥えた表土 を採掘あるいは山野草を刈り取って自らの㚼に投入した ことなどが丘陵地の斜面における表土流失を加速し，沙漠化に拍車をかけたようである。

浙江省水利庁，特に浙江省常山県水土保持科学試験站 の協力によって常山県を始め，浙江省で敢も沙漠化の著
波において調査を行なうことができた。

常山の気候的特徵は大陸的で冬と夏が長く，春と秋は短い。 年平均気温は $17.4^{\circ} \mathrm{C}$ であるが，最高気温は $40.5^{\circ} \mathrm{C}$ にもなり，逆に最低気温はマイナス $9.2^{\circ} \mathrm{C}$ まで低下する．年平均降水且は $1,725 \mathrm{~mm}$ で， 3 月から 7 月の間にその 62% を占める雨か降る。原植生は暖温帯常緑広葉樹林帯に属している。1992年現在，常山県の 47% の土地が沙漠化となんらかの係わりを持っていると言わ れる。

沙漠化は一般的に带家近郊の襄山とも言うべき丘陵地帯で著しいが，現在そこでは程極的に緑化が行なわれて いる．マッ類や油茶（ッバキの仲間）の植林，カンキッ類，特にブンタンなど雑カン，あるいはビワ等の果樹栽培か盛んである。奈曼旗と比較して農民の教育しベルは高く，沙漠化防止のためのモデル農村（生態村と称して いる）もある．常山県象湖村のモデル集落ではブタやカ ィコの慈を利用した家庭㜣料用メダンガス発生装融を開発することで，マキの取り過ぎを防止している。また水土保持科学試験站においても，牧草や楽草あるいは野菜

図 7．向かいあった南北両斜面に侵入した植物の植被率および出現種数の推移．
南斜面の上部より 5 m 間隔で $1 \mathrm{~m}^{2}$ のコドラートを設定し，そこに出現した草種について調査した。棒グ ラフの黒部分は多年性イネ科草。

表1．沙漠化をもたらす要因の地域的特徴．

	気 候	地質，地形，植生	人為とその程度	事 例
乾燥地帯 （西部地域）	年降水量 100 mm以下風食		放牧＞耕作（伐採）	タクラマカン沙漠周刃地域 （新瀶ウイグル自治区）
半乾燥地帯 （東部地域）	年降水胃 350 mm風食	砂 沙地草原 中性～湿性植物 （酎塩性植物）	放牧 $=$ 耕作 $>$ 伐採	シリンゴロおよび奈曼旗 （内蒙古自治区）
半湿澗地帯 （東部地域）	年降水量 600 mm風食，水食	砂河川教，旧河川敷中性～湿性植物	耕作（伐採，放牧）	永定河の河川敷（北京近郊） 黄河の旧河川敂（禹城，䇈津，山東省）
湿稩地帯 （東部地域）	年降水助 1500 mm水食，集中致雨	砂，磜，岩石 山地帯，紅色沙漠中性植物	伐採＞耕作	皘江の河川敷（南昌，江西省）金襍盆地（淆江省）

を利用した草生栽培によるブンタンの栽培に力を入れて いる，ここでは河川のドロを有機物として与えている。 ブンタンの缶ツメ工場まででき，農家の現金収入の向上 が試みられている。しかし時に相当の低温にみまわれ， 1992年にはマイナス $11^{\circ} \mathrm{C}$ になった日があった。当地で は，酎寒性のあるカンキツ類を势入することによって生産の安定化を計る必要がある。

常山市近郊の常山江に面した試験站の周辺一帯は， 1930年代まで原生林であったが，1950年代から沙漠化 が進行したと言う。それでも現在は上述のような努力に よって再び緑が回復してきた。 しかしながら県しベルで みた場合は，沙漠化が防止されたとはとても言えない状笖である。同じ様な方法で緑化したとしても，土斏母材 や斜面の方位，傾斜角度によって植生回復の程度は著し

く異なるし，交通の不便な奥地ではまだ緑化事業がそれ ほど進んでいない。次に具体的な事例として，常山県师子口郷における向かい合った南北斜面で行なった植生調査の結果について述べたい。

調査地は片石砂土を母材とする南斜面と北斜面で，傾斜角度はいずれも約 35° である。1970年に油茶を植栽 したが，特に南面での植生回復は困難を極めている（図 7）南面，北面とも上部では油茶の生育が極めて悪かっ た。北面に侵入した雑草類の平均植被率は 69% で比較的回復が認められたが，向かい側の南面は僅かに 10.3% に過ぎなかった。侵入•定着した植物はほとんどが多年生であった。両面とも下部で侵入植物の種数と植被率が増大する傾向がうかがえた。斜面の全面にわたって，多年生のイネ科草（図7 の黒棒で示した）が優占したが，

南面上部は僅かにこのイネ科草が生えるのみであった。北面や斜面下部は水分条件がよいためか，シタ植物の侵入も認められた。同じ獄子口郷でも母材が片石砂土では ない場所は土墥表面の助きが少なく，例えば一度植生の破壊された傾斜角度 50° の東北斜面の平均植被率は 90% 近くまで回復していた。

带村地帯とは異なり，文化大革命当時に森林の乱伐を まぬがれた天童寺や国清寺などの大寺院周辺には自然林 がまだ残存している。この地域は今後，常山や天台など の植生回復の程度を判定するための対照区として，学術的にも極めて重要な森林である。

5．おわりに

筆者がこれまで中国で調査や研究を行なってきた沙漠化土地の気候や地質等の自然的背嘓と，沙漠化を加速し ている人為的要因の程度を表1にまとめてみた。広大な国土を有する中国では，沙漠化をもたらす要因が地域こ とに非常に異なっていることがわかる。

乾燥•半乾燥下では降水揾が少ないから森林は成立せ ず，イネ科やキク科の乾性植物が镸占する草原が多い。 このような場所は放牧利用による長い歴史を持っている か，近年の人口増加は放收家畜頭数の著しい増加をもた らし，その結果，過放牧になって沙地草原など脆弱な生態系から沙漠化か進行しつつある。また耕作に伴う灌溉水の誤った利用や草原法で禁止されているはずの草原で の耕作などを契機とする沙漠化も見手す駅にはいかな い。乾燥•半乾燥地は，もともと植生の現存冝が少ない場所だから，一度植生が壊され，風食などの影響を受け沙漠化してしまうと，植生回復は非常に因難である。

半湿間•湿橍気候下では丘陵地や山地などの傾斜地に おける乱伐や殑った耕作が沙漠化の引き金となってい

る．ここでは裸地化が進むと水食に伴う土壌流失の結果，不毛の荒漠地（沙漠化土地）が出現する。また黄河 や軠江など大河川やその旧河川收には広大な範囲で砂か堆程しており，ここでの土地利用を誤ると沙漠同様の景観になってしまう。しかし湿潤気候下では，例えば片石砂土地帯のように，たえず表面が崩壊している場所を除 けば，人為による緑化も比皎的容易であると考えられ る。

中国における沙漠化を防止するためには，さらに合理的な緑化技術を確立すると同時に，それを誘発し，加速 することが照念される現在の土地制度を改革することが （姜ほか，1992），人口抑制や臀民の環境教育の質的向上 と並び重要な社会的課題であると考えられる。

引用文献

原苜芳信（1992）：中国の乾燥地の笷水带業に見る徽気象改良技

林 一六（1990）：「植生理学一自然地理学誰座5」大明堂．
伊黍秀三（1976）：「生㤎の事典」沼田 真編，東京堂．
姜 銘•武内和彦•根本正之（1993）：封建主㐮の土地制度と中国の矿漠化．「地理」38－1：95－104．
根本正之（1991）：地球瑔境問題としての砂浴化．「高校通信•東莫•生物」317：1－5．
根本正之•鮊 暁空•李 勝功•姜 銘•副 新民（1992）：内蒙古東部半乾燥地の砂丘植生におよぼす放牧の㣌朁．「日草誌」38－1：44－52．
Barrow，C．J．（1991）：Land degradation．Cambridge Univ． Press．
Nemото，M．and Lu．X．（1992）：Ecological characteristics of Agriophyllum squarrosum，a pioneer annual on sand dunes in eastern Inner Mongolia，China．Ecological Res．，7：183－ 186.

UNEP（1992）：World atlas of desertification，Edward Arnold． Zhu，Z．and Wang，T．（1993）：Trends of desertification and its rehabilitation in China．Desertification Bull．UNEP，22： 27－30．

特集 第3回沙漠工学講演会講演要旨集

日本沙漠学会沙漠工学研究分科会＊

概 要

本稿は，日本沙漠学会沙漠工学研究分科会主催で行わ れた第3回講演会の䛨演内容を，プログラム，質疑応答 とともにまとめたものである。エネルギー，水，バイオ，気象の 4 つの研究グループを形成し，実質的活動を始め てからはや 2 年を経過した。年に 1 度の公の活助の場と して行われる講演会であるか，今回についても第 1 回 （1991，沙漠研究 Vol． 1 に収録），第 2 回（1992，沙漠研究 Vol． 3 （1）に一部収録）に引続き，多くの方のご参加と活発なこ議論をいただいたことに感謝申し上げる。本分科会コーディネーターである遠粯が中心となって行 われた Engineering Foundation Conference on Desert Technology II（ハワイ，1993．12．5～10）バイ オグループによる研究レポートおよびマングローブ体験 ッアー，水グルーブを中心とした啓蒙㱏「沙漠物語」の刊行など，活動は広かりつつつある。今後あ益々活発な活動を展開する所存である。 さらなるご支援をお願いした い。（小島紀徳）

プログラム
1993年11月9日（火），於理化学研究所（埼玉，和光） 13：30～開会挨拶：（兼総合司会及総合討論司会）

沙漠工学研究分科会サプコーディ ネーター，
成蹊大学工学部 小島紀徳 （以下敬称略）
13：35～請演I．「日本でなぜ沙漠か」と沙漠工学の役割
筑波大学農林工学系 安部征雄 （司会：日揮（株）柴田節夫）
$14: 15$～諩演 II．
地下水脈の水の流れ
清水建設（株）技術研究所 井伊博行
（司会：（株）ウィジン 森 忠保）
$14: 55 \sim$ 沙漠工学研究分科会活動報告
沙漠工学研究分科会コーディネー ター，
理化学研究所 遠藤 䁫
15：15～講演 III．耐塩性•酎旱性植物による沙漠緑化 への挑戦
東京農業大学総合研究所 加藤 茂 （司会：清水建設（株）大塚義之）
15：55～講演IV．沙漠における風力エネルギーと風車足利工業大学工学部 牛山 泉
（司会：（株）雄原製作所 結城邦之）
16：35～総合討論 全 員

Special Report Proceedings of Third Symposium on Arid Land Technology

The Japanese Research Group for Arid Land Technology＊（REAL Tech）

This symposium，held at The Institute of Physical and Chemical Research，Wako，Saitama，on November 9，1993，was the third symposium of The Japanese Research Group for Arid Land Technology．

The first lecture was a general topic given by Prof．Abe on behalf of our group，concerning the driving force of our research on the desert technology．The second lecture was given by Mr．It representing the water research division of our group，on the estimation techniques of ground water flow using a water soluble isotope tracer．The third lecture was given by Prof．Kato representing the biological research division，on the afforestation with mangrove plants from sea shore．The last lecture was given by Prof．Ushiyama，a guest of the energy and wind research divisions．The present article consists of the proceedings of the symposium including the questions，answers and discussions．

[^13]
I．「日本でなぜ沙漠か」と沙漠工学の役割

安 部 征 雄＊
I．＂Why Desert in Japan＂－Role of Desert Technology
Yukuo AbE＊

1．はじめに——日本でなぜ沙漠か

日本に沙漠はない。本来的な意味での沙漠化地域もな い。

そんな日本で沙漠やその関連の問題に興味を持った り，実質的に係わろうとすると，直接関係ない問題に「なぜわざわざ」という萦朴な問いが発せられる。この問 いの「なぜ」には否定的なニュアンスも強いようである。日本人の昔からの沙漠に対する情緒的な好感にもかかわ らず，国内における不十分な諸課題への対応が優先され るべきではないかという牽制である。時代が大きな変革期を迎え，同時に国際化が急速に進展する中，沙漠とて永遠の命題のようにことさら「日本にない」を意識する対象ではなくなりつつあるのにである。
沙漠問題を少しずつ理解するに従って，問題の踾広 さ，深さ，複椎さ，困難さ，重要さを知ることになり， これらを解決していくために更により多くの人々の理解 と参加と協力とが不可欠であることが解る，そのための「日本でなぜ沙漠か」の納得できる解り易い論拠は必要 である．一般への沙漠問題関与の必要性の普及によって より広輨な世論が形成され，それが社会的，政治的な面 にも影響力が及ぶように関心の輪を拡大していかなけれ ばならない。

日本沙漠学会は発足 4 年の若い学会である．沙漠工学 も新しい研究分野である。したがって，長年沙漠を舞台 に活躍されてきた幾多の先達に混じって，学会発足時に従来の専門分野の知見を携えて沙漠を対象として新たな活動の場を求めて入会してきた多くの人々もいる．その人々の個々の動機は沙漠へのロマンや焣，学究的な興味，平和的な国際貢献，嫄境問題としての沙漠緑化•沙漠化防止，技術力を生かした沙漠開発，純粋な経済的可能性などであるか，より広範な視点で沙漠工学としての沙漠問題関与の意義を検討し，整理しておくことは，一

般社会への普及の役割を持つ会員にとっても役立つこと と考えられる。沙漠開発や沙漠化防止に対して最も実質的に儌きかけをする沙漠工学分野より具体的な案を示 し，普及を実践するのは適役である。本拙論はその検討 を始めるに当たっての一助とするための私案である。

さらに，沙漠問題にこれから取り組もうとしている後継者のためにも，検討結果は有用となる。沙漠関連の研究や問題解決の実務には，資金の他に長期の時間と多数 の人材が必要となる。現代の若者達に対して様々な評価 があるか，環境関連の沙漠問題に対しては一般的には意識の高い若者が多いと感じられる。しかし，この拙論で沙漠工学の見解を整理しょうと試みていると同様に，彼 らもこの問題の往く末を判断しかね，己の関与の是非を決断しかねているようである。沙漠問題の検討結果と問題解決のシナリオが彼らに影響を及ぼし得るならば，多 くの優秀な若者達が夢をもって続いてくれると確信でき る。

2．沙漠と沙漠開発

「沙漠」と「沙漠化」という言葉の定義や表す意味，状況およびこれらへの人々の興味や問題点等は異なる。む しろこの二つは両極をなす事柄の方が多い。しかし，一般的には似たようなものと感じられ，区別されずに用い られていることもあるため，沙漠問題の本質的な理解と対応に器解や混乱が見られるようである。
沙漠の多くは，赤道付近の熱帯多雨地帯を挟んだ南北二つの回帰線を中心とした中綿度高圧帯と呼ばれる乾燥地帯にベルト状に分布している。この乾燥地帯は，地球 が自転し，太晹から受けたエネルギーが循環するために自然にこの緯度に形成されるあのである。したかって，沙漠は地球上の一つの土地の存在形態として，有るべき所に有るべき姿であるといえる。その沙漠は極乾燥の世界であるので，植生はないか，有ってあ極めて少ない。
＊筑波大学農林工学系．〒305 茨城県つくば市天王台 Tel．0298－53－4647
＊Institute of Agricultural and Forest Engineering．University of Tsukuba，Tennodai，Tsukuba－shi，Ibaraki， 305 Japan．

また，そこに住む人間もいないか少ない。人間が沙漠の自然の存在形態を知り，沙漠への無閣な関与を求めなけ れば，沙漠は人間にとって劦威となるべきものではな い。

一方，不毛の沙漠に高度に管理された技術を駆使し，都市を建設し，工業を興し，啨用地を拓くことは，現代技術の魔力を目の当たりに見，人類の可能性や進化した未来などを想像でき，ロマンを感じ，夢を膨らませられ る大事業である。また，厳しい乾燥瓄境下における研究上の可能性や適合性の調査，実験，試験等も近未来に向 けての実用化の期待が見られるので，夢の対象になれ る．一般的な沙漠への好感はこの開発に向けられること が多いようである．特に，開発には技術の貢献が不可欠 であるので，日本の様々な沙漠工学分野の知見や技術力 やノゥハウが発揮できる絶好の場として，克服すべき䧩 しい環境条件さえ含めて魅力に感じられるのかもしれな い。

3．沙漠化と沙漠化防止

沙漠化は，1977年，国連砂漠化防止会議で「土地の持 つ生物生産力の減退ないし破壊であり，終局的には沙漠 のような状態をもたらす」 ものと定義された（UNITED NATIONS，1977，1－5）．沙漠でない所が沙漠になってしま うことが問題となる。まさに化けるほどの状況の変化が生じる。この定義はその後意味か曖昧で混乱を招いてき たとして，1990年には「沙漠化／土地荒廃とは，乾燥，半乾燥及び乾性半湿潤地域における不適当な人間活動に基づく荒廃現象」と定義し直された（UNEP，1991，4－ 21）人為的に作り出される現象との意味づけが明確に された。

沙漠化の第一の問題点は現象の進行速度である。沙漠 の成因が千年，万年以上の時間スケールの話であるのに対し，十年オーダまたはそれ以下の比較的短時間で状況 が激変し，人為のインパクトが生態的な許容量を大きく超えていることを証明している。第二の問題点は，乾燥，半乾燥及び乾性半湿潤地帯において起きる現象であると いうことで，それらの地域の生物生産性が䟼失すること である．これはまたその生産性に依存する世界人口の五分の一から六分の一の多くの人間の食料が奪われるとい う第三の問題点につながる。したがって，この問題には飢餓とかそれによる人間の生死も係わってくるので，状況の悪化を放置できない。

農用地における沙漠化防止と沙漠化後の復旧は様々な悪条件が重なる困難な仕事である。年6万平方キロメー夕の割合で拡大する広大な対象に対して，比較的安価に

ならざるを得ない単価の技術で対応していかなければな らない。既存の技術でも十分有用であり，緊急を要する状況であるので，可能なところから徐々に実行していく ことか肝要である。 もちろん技術革新による効果の飛睢的な成果は常に期街されるが，現状を考慮すると，その期待はむしろ沙漠化防止または普及の進展に対してマイ ナスに作用する面がある。長い年月を要し，巨费を投じ て沙漠化を防止し，以前の生態的に安定した状況に復旧 したとしても，その土地の役割は一般的には上がった訳 ではない。あくまでもそれは回復であって，そのままで は生態的生産量以上のあのを生み出せない。したがっ て，掛けられた巨額な経費はいわば持ち出しである。沙漠化対策がこれほど必要性が指摘されてもほとんど進行 しない最も大きな理由がここにある。

4．永続的な食料の確保

食料は人類が存続し，国家や民族が繁栄していくため に最も基本的な必需品である。 その重要さは世界の人口 と食料生産量の増加関係の歴史的経緯が証明している。 しかし，現在，世界の人口が幾何級数的に増加し続ける予測がなされ，一方，食料生産技術の向上が追いついて いけない状況が旡慮されている。したがって，まず，人口增加に見合った生産量を確保するためには，飛躍的な技術革新か，従来の生産方式に対する発想の転換が必要 であると考えられる。

乾燥地も乾性半湿閵地も降雨量によってほぼ決まる生物生産昷は湿潤地と比較すると，一般的には低い。そこ から限界以上の生産量を得るためには生物生産能力を高 めるための人為が必要である。その人為の一つとして灌溉農業が挙げられる。世界の灌溉農業の割合は世界の農用地面程の 5.3% に当たり，そこから世界の穀物生産量 の三分の一を生産しており，土地生産性の高い技術であ る（プラウン，1990）．乾燥地域の灌溉率は 2.4% 程度で まだ極めて低い。生産性の低い牧草地を中心とする乾燥地域の農用地を自然的利用体系から人為的に管理された利用体系へと変換していく方策が取られれば，食料增産 の基盤は整備されていくことになる。経済的にも政策的 にもさらに技術的にも克服すべき多くの問題を含むが，近未来の世界の食料の必需性といかに折り合わせるのか熟虜を要する問題である。

日本の立場から考えると，本来的には高い農業生産性 を確保できる自然瓄境なり能力を持っているから，自国 における生産量を上げ，食料自給率を引き上げるべきで ある。世界的な食料不足か国国際関係の主要課題となる時代にあって，経済力の強さで世界の食料を筫い集めると

いう構図は永久に継続できるとは思えない。
しかし，様々な状況から現在のように，日本の必要食料の約半分は諸外国から輸入に頼るとしたら，少なくと もそれらの生産農地は日本の農用地を守るくらいの決意 で積極的に開拓，保全，改良等に協力すべきである。現在では，一般に生産条件の良好な近隣の湿潤地域諸国か らの翰入割合が多いが，将来的に考えると，食料事情が悪化すればするほど，生産增の䁅境条件を整備するのが より困難な乾燥地域の方が条件面で有利になると予想さ れる．ただし，それは日本が将来の食料の安定的確保の ために，生産基盤を日本の資金，技術援助によって作り上げる投資を行なうという前提が必要であろう，それな りの様牲を払い，相手諸国との緊密な信頼関係を確保 し，ともどもに栄える戦略を共有してこそ道は開けるも のと考えられる。

5．国漈貢献の形

多様化した価値観をあって湤動する国際関係の中で，今，日本に求められている最も切羽詰まった課題は国際貢献策であろう。硬直した経済観念を超え，世界の中の日本人となる哲学をもって回答を用意しなければならな い。世界の中の日本は最強の経済力を持つ国に仕立て上 げられてしまった。多くの日本人がそのご利益を受けて いようがなかろうが，世界は日本をそのように位置づ け，戦略として機能させようとしている節がある。この面ではわが国はもはや日本流のやり方だけで処すること はできなくなった。経済支援という形の国際貢献は逃れ られない。しからばそれは平和的な国際貢献の形で実行 することが大多数の国民の望むところである。

国際貢献の場を，高度に進化した広範な技術体系を用 い，学問的知識と人材を生かし，さらに経済力を支えと し，沙漠や沙漠化地域に求めるのは日本の特技と特質を生かした最も賢明な選択だと考えられる。特に，沙漠化問題においては，現文明の近代化が一つの終局的結果を蕗呈しょうとしていると考えられるような今日におい て，多くの場所で原始文明の生活よりも悲惨な状況，人間の尊登を伆つけるような状況か人為的活䡃によって作 り出されていることに多くを感じなければならない。ま
 いはずの人命の喪失が，食料の強摩に端を発する部族間抗争や国際紛争が沙漠化地域の多くで頻発していること を愁えねばならない。それに対して，人類が新しい世紀 を迎えるに当たって，何らかの問題解決の方向性を可能性を予測できるくらいにはなっておきたいものである。

肯定的な「日本でなぜ沙漠か」を問いかけたい相手は，

絶対多数の普通の日本人である。サイレント・マショッリ ティーと呼ばれ，意志を表現しない，主張しない大衆と見られていた日本のマジョリティーは，三，四十年ほど の世界や日本の様々な出来事を見，聞き，考え，そして在るべき姿を基準とした判定能力を持つようになった。 そしてその判定は相対的な「まともさ＝ノーマルさ」を示すことが多いように感じられる。マジョリティーはサ イレントからノーマルへと変貌した。日本のノーマル・ マジョリティーは，日本がなぜ沙漠問題に取り組まなけ ればならないかがデータをもって，論理的根拠に基づい て説明され，その実現のためのシナリオを形在るものと して示されれば，賛同し得る潜在能力を持ち合わせるよ うになっており，沙漠問題解決の最大の推進勢力になる と期待される。

6．経済効果の䬱価方法

仕事か経済的になり立ち得るか否かということは自由主義経済体制のもとでは最も基本的な要件で，沙漠問題 に係わる企業などにとっては現実的に気になる問題であ る．しかし，経済性のみで全てを判断する硬直さは考え直さなければ，世界の中での自由な経済活動か認められ ない状況になった。経済活動の発想を転換してより将来性のある形を模索していくのに好機かも知れない。特 に，沙漠問題は経済効率のみでは事業として成立しにく い。

まず，対応する問題の位置づけと問題解決のプロセス及び結果がもたらす影響を総合的に判定して最終的な経済効果として評価されなければならない。そのための手法もシステムあまだできていない。ここでは一般にいわ れる乾燥地域の沙漠化を念頭において論を進めている か，沙漠化／土地荒発は極めて明確な形で地球上に具現化する最終結末の姿である。したがって，この結末は熱帯雨林の崩壊，酸性雨による森林，湖，土地の死滅，才 ソン囱の破壊，地球温暖化の結果等，ほとんどの地球環境問題の結末に通じるのである．乾燥地域の沙漠化防止 のみのためではない。

また，問題解決の過程及び結果において，沙漠開発や沙漠化防止事業は経済的な効果のみをもたらすものでは ない。それらが目的に沿って順調に進行すれば，政治の安定，他産業の発展，社会生活の充実とそれらより派生 して考え，イメージ，感情などの抽象の世界へも多大な影響を及ぼすものである。したがって，それらの効果を幅広く深く並列的に加味し，経済効果に上乗せして総合的に評価すべきである。 日本の現在の経済的倔位性な ど歴史も底も浅いものである。つい 10 年ほど前までは

経済力が世界の上位といわれても，国民の多くはその実想を実感できなかったし，今も身についてはいない。だ か，世界の政治•経済戦略にはこの位置づけか好都合の ようである，戦略であれば，必ずしも真実ではないとい う注意は必要である。そうすると経済力だけを振り回し ていつまでも浮かれている訳にはいかない。しばらくの後に訪れる総合評価の時代に㑑えて，自ら進んで在るべ きものを目指すことが賢明であろう。
沙漠問題などの珸境関連プロジェクトに対する経済性 の収支は，目先の利相を見越した投資という普通基準で はなく，特別に息の長い発想が必要である，少なくとも 10 年，普通には四半世紀，生態系の安定を考えると半世紀や百年のオータが必要であろう，事業を企画，実施し た者がその結果を確認できないままにその生を終えると いうヶースも生じる。われわれの生きている間の世界こ とではなしに，われわれの二代，三代後の子孫の時代を想定した発想ができなければならない。
生きるに精一杯の国々ではそのような発想は実行に移 す余裕はない。豊かさを必要以上に享受しすき，その状況を守ることが生き甲斐になっている先進的先進諸国は自国のために益々大変になって途上国のことなど本気に はなれないようである。国土の壊㓕を経験し，飢えの感覚を記憶し，民主主義や自由主義経済下での復興と繁栄 を実践し，そして国際化の実態を目の当たりにしている日本人がまだ多く生存し，日本社会を主羿的に動かして いる間に，日本が先頭切ることが铰も適役であると考え られる。

7．薄泿技術の役割

沙漠工学において扱う最も重要な物質は水である。乾燥地域で水をいかに碓保し，効率よく利用しきるかか究拯のテーマとなる．いくら節水しようとしても植物は必要最少限度の水かなければ，植物としての体をなせない ので，農業は成り立たない。沙漠都市が建設され，産業用の工場が大規模に作られても，そこに水かなければ，人が住み動植物が共存し都市や工場か機能するようには ならない。
雀僦技術は世界の食料生産に欠かせないものである。㷹燥地にあっては，生産且の増産と安定化を図り，将来的にも人間の生活圈としての存在を䋛続させるために，灌誰技術は旪も現実的で有効なものである。しかし，一方で不適切な淮溦がもたらす塩類集榡や湿害にともなう沙漠化の進行の事例か報告されている。確かに現在の灌溉技術かそのシステムの巨大さ，袮蜼さ，対象地域の広大さゆえの不完全さまたは乾燥地型に最適合化されてな

い面を克服できていないことは事実である。しかし，だ からといって，現境保全に対晫させて安直な論理によっ て灌溉農業そのものを否定するかのような風潮は明らか に的外れであり，問題である。
自体，生哭的になんら問題となる方法ではないし，爽境保全を楯に問題視されるべきものではない。乾燥地域を悠然と流れる外来河川とその沿岸やそれを起点とした水
時代からも至るところで見られる。その技術を食料雐保 の手段として乾燥地域の人々は生きてきた。今後におい ても，灌㯒技術を用い沙漠開発や沙漠化防止及び復旧を進める事例は增えていかざるを得ない。6し生態的に問題のある技術であるとするならば，問題のない技術にま で完成させることが沙漠工学に課せられた課題と考えね ばならない。
さらに，肝に銘じなければならないことは，灌桜技術 の使い方を刑ってはならないということである。そして既存の技術にしても新規に開発される技術にしても欠点 は細心の注意を払って克服していかなければならないと いうことである。櫵箸技術は人類が存続していく限り持続可能な技術として長く役立たねばならない。大きな長所も極めて小さな短所の䅡み重ねで打ち消されてしまい かねないことを心すべきである。

8．おわりに——問晚解決のシナリオを求めて

ここ数年，日本において地球環境問題への関心の急速 な高まりの中で沙漠化防止問題がクローズアッブされ，様々な対応かなされた，また，沙漠化の解決策の未来形 として，経済的好調を背景とした華やかな沙漠開発計画 か提案された。沙漠問題の存在が多くの人々の知るとこ ろとなり，その解決に対して日本か貢献できそうである というそれなりの理解は得られたと考えられる。しか し，その間，沙漠を取り巻く社会的，政治的，経済的，国際的諸理境はかつてなかったスケールで変化してお り，沙漠問題の本質に埧響を及ぼす局面も生じている。問題の本格的な解決に向けての機遇が状況の変化でそが れないように留意しなければならない。
このような情勢の中，本問題の解決における沙漠工学 の欠くことのできない役割を再確認し，個々の分野の技術的，研究的成果を結集して沙漠開発と沙漠化防止の実現に向けてのシナリオを提示することは意義のある活動 である．その影響は技術的，工学的面のみでなく，沙漠問題全般の解決を促進する形で及ぶものと考えられる。

社：64－77．

引用文献

レスター・ブラウン（1990）：「地球白很＇90－＇91」タイヤモンド

UNEP（1990）：Status of desertification and implementation of the United Nations Plan of Action to Conbat Desertification． United Nations（1977）：Deserification：Its causes and sequences．Pergamon Press．

Key Words：Desert technology，Desert，Desertification，International cooperation，Irrigation

II．地下水脈の水の流れ

井 伊 博 行＊

II．Ground Water Flow of Aquifer

Hiroyuki II＊

1．はじめに

沙漠地帯の地下水開発としては，安易に地下水が利用 されることが多い。それは河川の少ない沙漠地帯で唯一利用できる水は地下水だからである。しかし，過剰な地下水の汲み上げは周辺の地下水位を下げ，今まで利用さ れてきたオアシスや井戸の水涸れを生じさせる。また，海岸近くでは，海水の地下水への侵入が起こり，地下水 の塩水化などの問題が発生することになる。 そこで，適性な地下水利用量を把握するために，地下水の水の流れ （流貫，速度，方向，年齢）を知る必要がある．様々な地下水の流れを調べる方法があるが，ここでは地下水の水質から地下水の流れを推定する方法について著者自身が携わったことを中心に紹介する。

地下水の水質から流れを推定する場合に様々な技術が応用されるか，ここでは（1）もともと地下水に溶けている成分やその同位体比から推定する方法（天然トレーサ試験），（2）人工的に地下水に地下水の流れの目印となるト レーサを注入する方法（人工トレーサ試験），（3）（1）や（2） によって得られた水質の進いやトレーサの広がりを解析 する方法（地下水流動解析技術）の 3 つについて紹介す る．

2．天然トレーサ狸験

天然トレーサ試験は地下水や周辺の水を採水し，その中に溶けている成分を調べることで，地下水の流れを推定するものである．その特徵はトレーサか移動してきた時間が長いため，広輨囲の情報が得られることである。

1）溶存成分

地下水の溶存成分は地下水の起源や地下水と接している

岩石に影慜される。 そのため，溶存成分を調べることに より地下水が通ってきた過去の履歴を知ることができ
る．また，正確な履歴がわからなくても成分によって分類することで，同一起源の地下水かどうかを判定するこ とができる。一般には晹イオン（ $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$ ， Fe^{2+} など），陰イオン（ $\mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{HCO}_{3}{ }^{-}$など） が利用される。採水と共に現地において，水温， pH ，電気伝奨度，酸化摆元電位（ORP）などが測定される。

2）同位体元絮

（1）地下水の起源の推定
地下水に溶けている同位体元素を用いる方法は地下水 の起源，年代を測定するのに有用である．まず，最もよ く利用されるのが水索と酸素の同位体である。水索の多 くは陽子1つと電子1つからなっており，原子畏は1と

図 2－1．北アメリカの降水中の年平均水素同位体比 （ $\delta \mathrm{D}$ ）．

[^14]

図2－2．台地の $\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ の関係。

図 2－3．台地のトリチウム浸度変化．

なる．しかし，ごく僅かであるか，中性子を 1 つまたは 2 つ含む水索があり，原子畳は 2 または 3 である。つま り，通常の水案（H）の重さの 2 倍または 3 倍の 6 のあぁ り，それぞれ，重水索（ ${ }^{2} \mathrm{H}, \mathrm{D}$ ）または 3 重水萦 $\left({ }^{3} \mathrm{H}\right.$ ：トリ チゥム）と呼ばれている。同じように，酸索にも重さの異なる同位体元新である ${ }^{16} \mathrm{O}$ と ${ }^{18} \mathrm{O}$ が存在する。これら の重さが異なるが同じ元絭であるものは同位体元案と呼 ばれている。一般に重い方が蒸発しにくく，また，凝結

しやすいので，海水から水が蒸発して雲が形成される時 に，海水には相対的に重い水萦や酸甞が集まり，雲の方 には軽い水素や酸素が集まることになる。また，曇の中 の水も重いものから雨水になりやすいので，地球的規模 では，高綿度ほど軽い水が雨水や雪として降ることにな る．これは経験的に降水時の温度と関係があるとされて いる．このように場所によって降る雨水の重さが異なる ことを利用して，地下水の起源が降水である場合，その

図 2－4．トレーサ試験概略図．

図2－5．解析モデル（平面図）

供給源となる地域の推定を行うことができる．図2－1 は降水の年平均の水菜の同位体比 $\delta \mathrm{D}$（ ${ }^{2} \mathrm{H}$ と H の比）の地域差を表わしたもので，数字か小さくなるほど軽い水で あることを示している。この図から高䋃度になるほどま たは，標高が高くなる（アメリカの西部の山脈地帯）ほ ど $\delta^{2} \mathrm{H}$ は小さくなることかわかる（Fritz and Fontes， 1983）．
（2）地下水の年鍳
地下水から降水起䃄の場合，降ってからどの位の時間が

経ったかを知る方法がある，それは地下水に含まれるト リチウムや炭素 $14\left({ }^{(14} \mathrm{C}\right)$ の舟を測定する方法である。ト リチゥムや炭索 14 は放射性元素で，その㚗はそれぞれ 12．43年，5，730年で敢初の宜の半分に減っていく。ト リチゥムや炭菜14は一般に，大気中で宇宙線によって生じるため，地下では生成されない。そこで，降った当時の降水のトリチウムや炭䇣14（炭酸イオンとして存在する）の量と地下水のトリチゥムや炭素14の血かか かれば，その変化周から降ってからの時間を計算するこ

図2－6．地下水位分布（平面図）。

図 2－7．揭水孔の核度変化と解析結果．

とができる。このようにして得られた地下水の年代とし ては，サウジアラビアの地下 $382 \sim 1,214 \mathrm{~m}$ の水が $20,000 ~ 33,000$ 年という値か得られている。一方，日本 のように降水量が多く，山から海までの距離か短い所で は，地下水の移動速度は速く，黒部川扇状地の深居地下水で 2 年前後，南関東の深喏地下水で 20 年前後という結果が得られている（榧根，1973）。
（3）調査例
国内の台地地下水の水の流れについて紹介する。図2－ 2 に $\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ の関係を示す。この地域の水はほぼ天水起碩の水の $\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ の関係式（IAEA，1983）である $\delta \mathrm{D}=8 \times \delta^{18} \mathrm{O}+10$ の直線上にある．天水の $\delta \mathrm{D}$ は翟の降水の -30 から冬の雪の $-120\left(\%_{0}\right)$ まで変動し，この地域の水はその平均の $-73 \sim-83(\%)$ 付近に集中してい 3．これらのことから，採水した水はこの地域の降水起

獂と考えられる．台地内部から採取したトンネル涌水は $\delta \mathrm{D}$ が－79～－83（\％）， $\mathrm{\delta}^{18} \mathrm{O}$ が $-11.4 ~-11.7$（ $\%$ ）の狭 い範囲にある。この分布は台地中腹部にある涌水と一致 する．台地上部にある丽水はトンネル涌水に比べて分布笔囲が広いものの，$\delta \mathrm{D}$ が $-76 \sim-80(\%)$ 。 $\delta^{18} \mathrm{O}$ が $-11.0 \sim-11.4(\%)$ に集中し，トンネル㴗水よりも全体的に大きい。河川•池の水などの地表水もトンネル涌水 に比べて，$\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ は大きい。深井戸の水はトンネル涌水に比べて $\delta \mathrm{D}$ が $-83 \sim-89(\%)$ と $\delta^{18} \mathrm{O}$ か $-12.0 ~-12.5(\%)_{0}$ と小さい。このように地表水，台地上部にある湧水，台地中腹部にある湧水，トンネル澚水，深井戸へと地下深くなるほど $\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ か小さくなっ ている．
図2－3にこの台地のトリチゥムの㴆度を示す。トリチ ゥムの目が多いほど地下水の年齢が若いので，トンネル

図 2－8．トレーサ注入後 100 時間後の㴖度分布（平面図）。

表 2－1．浸透流解析の条件

序 写	10 m
透水係数	$5 \times 10^{-6} \sim 1 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$
境界条件	不透水境界（注入孔，揚水孔を除く）
注入孔	流量境界： $3,900 \mathrm{~cm}^{3} / \mathrm{min}(1 / 2$ の領域）
揚水孔	水頭境界：-15 m （自然水位と比較して）

注：循球路は解析領域に含まれない。
湧水や深井戸ほど地下水の年齢が古いことになる。この ように，古い水ほど水索や酸素の同位体比は小さく（ $\delta \mathrm{D}$ と $\delta^{18} \mathrm{O}$ が小さくなっている）なることから，現在よりも降水時の気温は低かったと推定される（井伊ほか， 1994）。

3．人エトレーサ試験及び解析

1）人エトレーサ試験
人エトレーサ試験はもともと地下水に溶けていない物質を地下水に注入し，その広がり（濃度分布）から，地下水の流れを推定する方法である。地下水に注入したト レーサは希釈され，流れがおそいので，トレーサの検出限界，測定期間によって試験胹囲が制限され，一般に広範囲の試験は困難である。この試験は自然の流れそのも のを調べると共に次の第 2）節の解析によって地盤の定数を決めるのに使われる。地盤の定数がわかれば，様々 な条件（地形，降水舟，篝造物の形などを変えた場合） での地下水の流れを解析することができる。また，地下水が塩類で汚染した時の移動を予測したりすることが可能である．トレーサとしては染料，イオン，同位体元素

表2－2．物質移動解析の条件

初期懐度（注入孔）	$1,700 \mathrm{ppm}(112.8$ 分間）
透 水 係数	$2.2 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$
流 速 分 布	浸透流解析結果を利用
有効間弥率	最大 30%
分 散 長	$0.014 \sim 7.0 \mathrm{~m}$
首 厚	10 m
境界 条 件	不透水境界

注：循環路は解析䫀域に含まれる。循䍗路（瞕 10 $\mathrm{cm})$ の流速は， $3,900 \mathrm{~cm}^{3} / \mathrm{min} \div(10 \mathrm{~cm} \times$ 1.000 cm ）$=0.39 \mathrm{~cm} / \mathrm{min}=0.0065 \mathrm{~cm} / \mathrm{sec}$

などが用いられる．

2）解析

1）の試験による解析や将来の予測を行なうのに有用 である．解析上で重要なことは正確な地䑾のデータを得 ることである，この値を変えれば，出力される結果も変 わるので，様々な結果が出てくる可能性がある。それゅ え，1）の結果を用いて正確な地盤の定数を得ることが必要である。解析から得られた結果が他の試験結果と整合性がとれていることが重要である。ここでは，地下水流 れ（浸透流解析）と地下水中に溶けている物質の流れ （物質移動）の解析を解析例で紹介する。浸透流解析は地下水が水位（水圧）の高い所から低い所に流れる現象 （移流）をあらわしている．物質移動の解析は，移流の他 に地下水に溶けている物質が分散（流れと共に広がる） していく現象も加味されている。また，場合によっては その物質が沈殿したり，吸着したり，放射性元索であれ

ば崩壊して消滅する現象もあらわすことができる。数学的に解く場合には，理論解法と数値解析法があり（地下水入門編集委員会，1983），解析例では複雑な条件に対応できる数値解析法の 1 種である有限要䒺法による浸透流と物質移動の解析結果を示す。

3）人エトレーサ試験と有限要案法による解析例

国内における人工トレーサ試験による堆程岩の有効間隙率，分散係数，透水係数の解析例を示す。この試験は図2－4に示すように 2 本のボーリング孔を用い，地下 80～90 m の透水屋の定数を求めるために行なわれた。上下の地屇は対象となる地㡿に比へで透水性が低い。こ の透水層に対して吸着の少ない Br^{-}がトレーサーとし て選ばれ，その溶液を一方のボーリング孔（注入孔）か ら注入し，それをもう一方のボーリング孔（揚水孔）で採水し，トレーサの瀑度変化から地盤の定数を解析し た。解析試験期間中の流れを一定にするためと観則期間 を短くするために水中ポンプで一定の流通の水を汲み上 げて，それをもう一方のボーリング孔に注入し，循環す る流れを作った。ボーリング孔の水位が一定になった時 にトレーサ溶液を注入し，揚水側で採水を開始し，ト レーサ涱度を測定した。

ここでは 2 次元の有限要素法による浸透流と物質移動解析の結果を示す。その時の解析モデルを図2－5に示 す。また，表 2－1 に示す条件から浸透流解析により図2 －6 の地下水位分布が求められる。 さらに，図 2－7 に示す トレーサ試験によって得られた揚水孔の㴆度変化と合う ような地盤の定数を解析によって求めた。次にその値を用いて，トレーサ注入後 100 時間後の浐度分布を図 2－8 に示した（井伊ほか，1993）このように解析によって地盤の定数を求め，それを用いて予測することができ る。

參考文献

井伊博行•三沢伸也（1993）：松本トンネルの弾水とその周辺地下水の水質について。「地下水学会誌」 36－1（印刷中）。
井伊博行•石川 泰•杉原弘造•格田吉造（1993）：野外トレー サ式験による堆程岩の分散係数と有効問榢率の咕定．「地下水学会誌」 35－1：23－36．
樞根 勇（1973）：「水の循环」共立出版：230p．
地下水入門編集委员会（1983）：「地下水入門」土質工学会：210p． Fritz，P．and Fontes，J．Ch（1986）：Handobook of en－ vironmental isotope geo－chemistry，2．Elsevier．
IAEA（1983）：Isotope techniques in the hydrogeologial assess－ ment of potential sites for the disposal of high－level radioac－ tive wastes．Technical Reports Series，228，IAEA，Vienna．

Key Words：Groundwater，Migration，Isotope，Chemical composition，Seepage

III．耐塩性•耐旱性植物による沙漠緑化への桃戦

加 藤 茂＊
III．Challenge for Desert Rehabilitaion through Sustained Halophytes and Drought Resistant Plants

Shigeru Kato＊

1．まえがき

現在，地球上には通常の生物が椿息出来ないとされて きた様々な極限琿境（高温，低温，乾燥，高圧，高温，強アルカリ，強酸，低酸素など）がある。また，一方で は人為的にこれらの理境条件には至らないが，徐々にで はあるか現在の環境に対して負のインパクトを確実に増加させている地域もある。例えば，大工業地域からの生産活動による熱，炭酸ガス，多畳の工場廃水の排出，あ るいは人口增加に伴う食鋉生産の場での一方的な土墽か らの土墩淁分の収軎による土壌の肥沃度の低下や地下水 の過剰利用による土壌の塩性化である。このようなバラ ンスを失った環境の修復には，多大なエネルギーと資金 を必要とするか，以前の完全な状郎へと戻すことは不可能と考えられる。 しかし，地球上のあらゆる極限桭境下 においてもその環境に適合した生物連䠝系が形成され様々な生物の活動が行なわれており，今まででは考えら れない特異な機能を有する多様な生物の䛶息が確認さ れ，それら生物の持つ特性について研究か始められてい る。

それらの中で内陸部においても地表面に塩（特に $\mathrm{NaCl})$ の分布する，あるいは地中から塩分が上界し農耕 に不適な塩類土壤地域に，また海岸線や湖沼（ラグーン：海水，汽水，淡水域を有す）に分布し生育する臫塩性植物の植物群（Halophytes）がある。これらの地域は，海水 の定期的な侵入や汽水の停滞などにより䍚作物生産の場 としての利用は極めて少なく放置されており，その開発 と利用には多くの問題が潜在している。また，年間降雨闌が極めて少ない乾燥地域（沙漠）においても強い乾燥 にも酎え，灌溉によらないでも生態系を構築する酎早性植物（Drought resistance plants）が分布生育している。

このような不毛地域にもかかわらず生育している植物 の高塩潑度㺽境や強乾燥瓄境条件に適応するメカニズム

の特性を明らかにすることは，新たにこれらの未利用地域を食粞やよびエネルギー生産の場として利用できる重要な示唆を得ることが可能である，そしてこれらの耐塩性植物や耐早性植物の多くは，重要な違伝資碩であるか一部の植物を除いて殆ど利用されていないのが現状であ る．実際に農林業の分野における活用は現在のところマ ングローブ植物と僅かの限られた植物のみである。

2．植物の塩害

程害とは，主に作土中に存在する過剩な塩類に起因す る作物の生育障害を指しているが，台風などにより塩分
面に被害を及ぼす場合がある。塩害の程度は，塩類の朆度のほかに塩の種類および作物の種類により異なる。こ． の塩害発生については，いろいろな嫄境要因が重なり合って生じていることから多数の要因が示されているか主要なものとしては以下のようにまとめられる．それ は，（1）土㙴溶液中の塩類の浸透圧による植物の給水阻害 （Osmotic stress，浸透圧ストレス），（2）塩を構成してい るイオン種の特異的な生理作用による過剰障害（Ion stress，イオンストレス）の 2 つに分けられる（高橋， 1991）．
（1）塩類の浸䢞圧ストレス：土䇉の乾燥による水ストレス と似ていて，水ボテンシャルの低下の度合いでストレス の強さを表わすことができる。水ボテンシャルの低下は吸水を困難にし，細胞の膨圧を失わせることにより，気孔開度の低下，葉のしおれ，光合成産物の転流阻害など を誘発する．枯死に至らない場合もあるか，その程度に応じて作物の生育を大きく低下させることになる。塩類 の浸透圧ストレスは，根の周りの土壌空隙中の水分の毛管張力の增大に起因する水ストレスとは異なり，葉身の外でも塩類の泿縮が起こるために，葉身の受ける影䇾は

[^15]表3－1．純マングローフ辆成植物種．

科 学 分 類 名	科 学 分 類 名
Avicenniaceae（Verbeneceae：クマツヅラ科） Avicennia officinalis L． Av．marina（Forsk．）Vierh． Av．alba Blume Av．lanata Ridley Av．eucalyptifolia Moldenke Av．balanophora Stapf and Leechman ex Moldenke Av．germinans（L．）Stearn Av．africana Palisot de Beauvois Av．bicolor Standley $A v$ ．schaueriana Stapf and Leechman ex Moldenke Combretaceae（シクンシ科） Laguncularia recemosa（L．）Gaertn．f． Lumnitzera littorea（Jack）Voigt． L．racemoasa Willd L．rosea（Gaud．）Presl． Terminalia catapa L ． Conocarpus erectus L． Meliaceae（センダン科） Xylocarpus granatum Konig． X．mekongensis Pierre X．moluccensis（Lamk．）Roem． Myrsinaceae（ヤブコウジ科） Aegiceras corniculatum（L．）Blanco A．floridum Roemer and Schultes Ardisia elliptica Thunberg Myrsine umbellulata A．DC． Plumbaginaceae（イソマツ科） Aegialitis annulata R．Brown	A．rotundifolia Rocbourgh Rhizophoraceae（ヒルギ科） Rhizophora apiculata BL． R．mucronata Lamk． R．stylosa Griff． R．samoensis（Hochr．）Salvoza R．lamarckii Montr． R．selala（salvoza）Tomlinson R．mangle L． R．harrisonii Leechman R．racemosa Mayer Bruguiera gymnorrhiza（L．）Lamk． B．sexangula（Lour．）Poir． B．exaristata Ding Hou B．parviflora Wight and Arnold ex Griffith B．cylindrica（L．）Bl． B．hainessi C．G．Rogers Ceriops tagal（Perr．）C．B．Robinson C．decandra（Griff．）Ding Hou Kandelia candel（L．）Druce Rubiaceae（アカネ科） Scyhiphora hydrophyllacea Gaertn．f． Rustia occidentalis（Benth．）Hemsl． Sonneratiaceae（ハマザクロ科） Sonneratia caeolaris（L．）Engler S．alba J．Smith S．apetala Buch．－Ham． S．griffithii Kurz S．obata Backer

大きくなる．これには葉面からの蒸散用に影斐する大気中の湿度，気温が関係している。
（2）権類のイオンストレス：イオン固有の生理作用による もので，塩類土埌に存在するカチオンで特に問題にされ るのはナトリウム，マグネシウムである．特定のイオン激度が高いと，他のイオンの吸収を抑える拮抗関係はイ オン間で一般的に認められている。塩類土缡地域で問題 となる高ナトリウムは，カリウム，マグネシウム，カル シウムの吸収を抑制低下させ，マグネシウムはカリウム とカルシウムの吸収を抑制低下させる。このために植物体内におけるイオンの均衡か崩れることにより生育障害 が発現することになる。一船的に塩類土㳳ではナトリウ ムのほかにマグネシウム，カルシウム䬵度が高いことか

ら，イオン欠乏の問題にされるのはカリウムである．カ リウムの選択吸収能の高い作物やカリ肥料の施用によ り，実際の囲場で作物に対して酎塩性を高める効果の存在が報告されている。細胞質中のイオン搌度がある範囲 を超えると代謝の異常が生じるか，その搌度限界がどれ位かまた，植物の種類や酎塩性能力の相虺によって異な るかは現在まだ十分に明らかにはされていない。

3．植物の耐塩性機搆

河口域の塩性沼沢地，塩沙漠，海水の侵入する低湿地 のような塩類泧度の高い䍗境に自生している植物の種類 は，限られている。これらいわゆる塩生植物は，一般植物にはない強い酎塩性を備えている。アリソナ大学の

James Aronson は，117科の塩生植物をデータベース化している（Aronson，1989）．典型的な塩生植物として は，熱帯•亜熱帯の感潮河川或に分布しているヒルギ科 やクマツツラ科を代表とするマングローブが，塩田跡地 に生育しているアッケシソウ（サンゴ草）が，また沙漠 の塩生植物としてその代表にアカザ科の植物がある。

このような塩生植物の䩂塩性機構を明らかにすること は，未利用土地や塩害による放棄睘耕地の再利用の道を開くものと考えられる。しかし，植物の示す酎塩性の機樀は複雑である．植物の塩に対する対応には，大きく分 けると（1）生態的なもの，（2）形態的なもの，（3）生理的なも のの 3 つのことが考えられている。

1）生想的な対応㭲搆

塩に対する植物の感受性の程度は，生育期により大き く異なる．一般には，発芽期が最も塩類ストレスに対し て敏感であるとされている。それらの中で，熱帯や亜熱帯の海水の出入りする海岸や河口域の潮間帯に分布する マングローブ植物は，生育している環境条件にうまく適応している，ヒルギ科に属する種類の多くは，樹上で種実を成熟（胎生種子）させた上で更に担根体（Rhizo－ phore）といわれる根を十分に成長させた後に母樹から離れ落下しその地に発根をして活着する。あるいは散布体として海流に乗り，他の場所に移動してその地に根付 きマングローブ林域の拡張と世代交代を行なっている。 マングローブ植物は，アメリカではマングローブ植物が陸からだんだんと海に向かい進むことから＂歩く木 Walking Plant＂と称されている。純マングローブ種に ついて，表 3－1 に示す（加藤ほか，1993）。

2）形烈的な対応掝搆

植物体内へ多昷の塩分（ NaCl など）か取り込まれた場合，塩類を隔離したり排出する植物がある。酎塩性植物であるハマアカザ類では，葉の表面には塩毛（Salt hair）と呼ばれる毛が密生していてここに塩分を眝蔵す 3．そしてこの塩毛は，風などにより物理的に取りださ れ植物体に取り込まれた過剰の塩分は植物体から分離さ れる．塩毛は，このように落下と新生を繰り返している （内山，1990）．また，マングローブ植物の一種であると ルギダマシ（Avicennia marina）は，葉表面に塩類腺 （Salt gland）を備えている。このヒルギタマシ種子を各種塩（ NaCl ）塰度を設定し栽培を行ない，一定時間内に排出される塩について検討した結果，栽培液中の塩䍚度 の上昇と共に一定時間内に排出する塩は增加した。この ヒルギタマシは，吸収した他のイオン類の排出は殆ど認 められないことから過剩吸収した塩（ NaCl ）を積極的に

は塩類腺から排出している（加藤，1987）。
植物体は葉身，柄，茎，根から構成されているが，塩類のストレスを最も受け易い器官は光合成を行なう穼身 である．植物の種類にもよるが，過剰に塩類を取り込ん でも比較的生育に影響の少ない部位に移行著移するもの が多い。枼柄や根や蒸で塩分漖䅡湛度が比較的高くなる か，葉身の塩分㴆度を低く抑えている植物や，光合成に関与していない部分に塩分の分布割合を高くする植物ほ ど塩に対する耐性は高い傾向が認められている。植物に は高塩䕕度環境下で生育すると，乾燥棵境下で生育した場合と同じょうに，葉の小形化，葉数や単位葉面積あた りの気孔数の減少，葉が肥孯するなど蒸散且を低下させ ることにより塩類の吸叹を抑制する対応をしている。

3）生理的な対応㞃搆

植物が高塩環境下で生育するためには，過剰の塩分の排除を植物体のどこかで行なうこと，外界の塩分による高浸透圧に対して細胞の膨圧を維持するために細胞内部 に高浸透圧を作り出す必要がある。
〈塩分の排除〉
植物が高塩跟度（ナトリウム）の存在下で生育する時 には，細胞質のナトリゥム鞎度が上昇しないような機聮 が必要である．そのために植物が持っている機構には，現在のところ次の 3 つが考えられている。
（根の部分でナトリゥムの吸収を抑制する。
（D）根が吸収したナトリウムを再び根から排出するか，地上部の特定の組織（塩類腺など）から排出する。根か吸収したナトリウムを細胞の液胞中に隔離詝蔵 する。

〈浸透圧の作出〉

外液の高い浸透圧に対して細胞の膨圧を維持するに は，これよりあ高い浸透圧を細胞内の細胞質と液胞中に作出しなければ細胞は生きることができない。植物種に よりその浸透圧作出物質は異なる。ナトリゥムの排除を する広塩性植物であるョシは，細胞質中ではカリウムと ショ榶により，液胞中ではカリゥム塩を利用していると推定されている。

ナトリウム集皎型のホソバノハマカサ類やその他の耐塩性植物は，取り込んだナトリウムの大部分を細胞体䖽 の 90% 以上を占める液胞中に集中萿積し，塩紊や有機酸類と共に浸透圧を作り出している。また，細胞質内で は，ベタインかこの役割を果たしている，ナトリゥム集積型のホソバノハマカサ類のひとつには，植物体内に吸収されたナトリウムは液胞膜にあるナトリウムボンプで汲み入れ，液胞内に封じ込めると共に高い浸透圧を作り出すのに利用している。250ミリモルの塩化ナトリウム

表 3－2．中東地域の代表的な耐旱性植物．

	Scientific name	
Highly tolerant	Moderately tolerant	Some tolerant
Acacia faenesiana	Albizia lebbek	Ceiba pentanda
A．melifera	A．procera	Combretum aculeatum
A．nilotica	Cassia auriculata	Dendocalamus stricus
A．senegal	C．siamea	Eucalyptus camaldulensis
Conocarpus lancifolius	Casuarina equisetifolia	E．gomphocephala
	Dalbergia sissco	E．microcorys
	Dicrostachys microtheca	E．tereticornis
	Eucalyptus．E．Tereticornis	Khaya senegalensis
	（hybrid）	Leucaena glauca
		Pongamia pinnata
		Populus euramericana
		Stereospermum kunthianum

を含む培㬵液で生育させたホソバノハマアカザの葉から調整したプロトプラストと，その中から摘出した液胞の溶質組成を分析すると，プロトプラスト中には外液の 2倍以上のナトリウムを含んでいるか，ナトリゥムの殆ど が液胞内に存在していることが明らかである。この液胞内のナトリウムイオンに対する陰イオンとしては，塩索 イオンとシュウ酸イオンである。一方，細胞質中の溶質 の激度について正確には把握されていないが，シュウ酸 の存在は現在までのところ確羿はされていない。また， ナトリウムの分布も細胞質中では低渋度あるいは無いも のと推察されている。また，ショ磄とベタインについて は液胞内に見出されないことから，細胞質中に分布して いるものと考えられている。

酎塩性植物においても細胞質内に高滞度のナトリウム が存在することは一般の植物と同じように様々な点で植物体にとって負のインバクトであることから，細胞質中 では高噑度に存在しても代謝障害を起こさない有機質で浸透圧を作出し，一方，液胞ではナトリゥムと塩䇣と シュウ酸イオンにより浸透圧を作出する2ステップで対応している．このような機樶は，多くの䩂㙁性植物に共通なものとされていることから，植物の耐塩性のしく みは，次のように要約できる。
（1）根にナトリウムの流入を抑制するシステムがある。
（2）流入したナトリウムを根，茎，葉柄の部分に萿積し葉身への移送を抑制する。
（3）地上部へ移動したナトリウムを根へ再転流し，排出 する。
（4）葉身に送られてきたナトリゥムを表皮細胞から分化 した塩毛に眝蔵し，十分に落盉後塩毛組織の崩壊に より植物体から捨て去り，新しく分化してきた塩毛

内にナトリウムの収納•盖䅡•廃棄を繰り返す。
（5）葉面に塩類腺という特殊な組織を分化発逵させ，光合成のエネルギーを用いて根から移送されてきたナ トリウムを植物体外へ分滵•排出する。
（6）葉肉細胞の巨大な液胞の中にナトリゥムを眝蔵し，重要な生理作用を営む細胞頎から隔離するとともに細胞の膨圧を作出するのに利用する（葉は厚くな る）
（7）細胞質には，生理作用に対して障害とならないカリ ウム，ショ糖，アミノ酸類の㵋度を上昇させて浸透圧を作出する。
また，植物の多くは，高塩類漫度の環境下において生育すると乾燥环境下での生育と同じょうに革数や葉面積 の減少が見られる。更には，単位面積あたりの気孔数の減少や葉の多肉化（莯荲の増大）などの形態的変化も伴 う場合が多く見られる。これらの結果，菓面からの蒸散䁅は大きく減少して根からの塩類の吸収を抑制すること になる。

4．植物の耐旱性と旱客

陸上植物は一般に多量の水を消费しているか，自然環境は恒常的に植物の生育に必要な且の水を供給するとは限らない。陸上植物は，それぞれ水不足に対応するため の機権を備えているが植物種によりその能力は大きく異 なる．乾燥•半䡎燥地域に分布する植物は，長い時間を かけてその過酷な环境に適応する種のみが選抜淘汰され生存を続けてきた植物群である。沙漠および䡎燥地域に分布する植物および作物についての重要性については， すでに詳しく報告されている（KANEKO，1992）．その一

部について表3－2に示す．沙漠地域のような過小な降水
 などにより植物は水不足すなわち水ストレスの危険に䈋 されている．植物の受ける水ストレスには，水分張力ス トレスと浸透圧ストレス（程害）の 2 つがある。このう ち水分張力ストレスは，植物の早害の問題を引き起こ す．

1）植物の酎旱性の機構

植物が水不足に対応する方法として，1つは植物体内 に致命的な水分ストレスをもたらさないようにする方法 （見かけの酎旱性）と他の 1 つは植物体内に生じてし まった水ストレスに酎える方法（真の酎旱性）の 2 つで ある．

（1）見かけの酎旱性

植物の対応の仕方には，＠根からの給水能を高める， （b）地上部の保水能を高くする，©生長をとめ，乾燥期間 を過こす，の3つが考えられている。
（a）根からの給水能：排水の良い土壌では，降水後1日 くらいで重力水は排除され，囲場容水县の状屍になる。
この時点で土墥孔隙中の水のフィルムは互いに連絡して毛管水になっているか，孔隙中の水が根により吸収され るとその部分の水分張力が高くなり，それに引かれて周囲の毛管水は根に向かい移動し次々に吸収される。しか し．葉淍点に近づくにつれて孔隙中の毛管水の張力が高 くなり根に徐々に吸収されにくくなるにつれ，孔際中に毛管水が孤立するようになり根から離れた孔隙中にある水は吸収されなくなる。このようなことから土墳中での根の分布の良否が植物の耐旱性の決め手となるか，作物 の種類や品種あるいは栽培管理により酎旱性の差異とな り発現される。
（D）地上部の保水能：植物体の地上部の蒸散を少なくす ることも酎早性にとり重要である。地上部の䈎身は，炭酸同化と共に蒸散も活発に行なう機関であることから，蒸散照を少なくするために植物は葉身を小さくしたり，栾表面をロゥ質でおおったり，気孔の開閉を敏感にする （Black et al．，1976）。沙漠や高原地域に分布している代表的なサボテン（乾性植物）は，炗表面は厚いロゥ質で復われ，葉は針のような形態をして蒸散による植物体内水の損失を最小限にしている。水不足の環境下で生育し ている多肉食物は，猩間は気孔を閉じ，夜間気孔を開い て炭酸ガスを取り込み呼吸基質を消費してカルビン・ベ ンソン経路を経て榶まで合成するが，乾物生産の効率は低い。植物ホルモンの一種であるアブシジン酸は気孔を閉じる作用があり，耐旱性のすぐれている植物はこのア ブシジン酸の分布䈨度が高い傾向があるといわれてい

る．また，耐旱性に関係する化学物質としては，水スト レスを受けた植物体内には集積しても無害で浸透圧を高 める作用のあるプロリンが集積することか報告されてい る．そして同じ種でも臫旱性のすぐれている品種はその プロリンの分布蜄度が高いことが知られている。
©生長をとめ，乾燥期の回避能：植物は少品の水を最大限に利用するために，乾季には地上部を枯らして種子，球根，根埊などで回避する。降雨とともに生長を初 め，あとの乾燥期に戻るまでの短い期間に開花から結実 までを終え，また次の雨期を待つ生育リメムを繰り返 す。

（2）植物の持つ蒖の酎旱性

植物の細胞の原形質が脱水の条件に酎えて細胞の持つ機能を保持する場合である。多くの高等植物では，種子，花粉，地下茎などにより特定の生育時期や特定の期間に は脱水の条件に耐える機能を備えている。

2）水分張カストレスの植物の生育に及ぼす影暃

水分張力ストレスの植物への程度を測定する方法とし ては，根圈土培の水分張力を測定する方法と植物の葉内水分ポテンシャルを計測する方法がある。土壤水分張力 の計測は，生育嫄境の水分状態の変化と植物の生育との関係を観測するには好適であるが植物体内の水分状態を示していない。このことから植物体内に生じた水ストレ スと生理的変化の直接的な関係を把握するには，葉内水分ボテンシャルの計測が必要となる。
（1）生骨に及ぼす影響：水ストレスの植物に対する影響 は，植物の表面組織と深い関係が見られる。組織表面に ワックスに富むネギ類や表皮がクチクラ㞓で覆われてい るアロエ類では，他の植物に比較して水ストレスの影響 は余り顕著には現われない。酎旱性の強い植物は生長が遅く，水ストレスの下では生長を停止し，代謝を極力低下させて対応していることか推察される。
（2）窒素代期に及ぼす影䇾：水ストレスにより窒素含有率が增加する。土裏水分を植物の葉淍点に近付けると作物中の硝酸態空萦淈度が高まるか，灌水するとこの硝酸態空案派度は減少する。水ストレスによる铝料作物にお ける硝酸態窒菜の䒼敉は，家畜に硝酸中先を誘引する危険性があり，飼料生産剆の低下ばかりでなく品質の安全性からも問題となる。水ストレスによる空案代謝により プロリンの集䖽が見られるが，この集積が作物の環境に対する適応的あるいは崩壊的か㒛論が分かれる点である が適応的であれば耐早性に関連するか，後者ならば旱害 である．

5．酎塩性•酎旱性植物の艮業利用

従来から栽培されている主要作物に対して耐塩性•耐旱性を付与することと，耐塩性•酎旱性を既に備えてい る塩生植物および耐旱性植物の活用あるいは改良を重ね て作物化を図ることである。
作物種によりその塩に対する酎塩性•耐旱性には，強弱の差が大きい。作物種にもよるが，その程度の差は約 10 倍くらいあるとされる。土壌の塩類化や土堙水分張力の低下があまり進んでいない場合には，比皎的酎塩性•酎旱性の強い作物種を選択することによって栽培が可能である。同種の作物においても品種間で耐塩性•酎旱性の違いが見られることから，耐塩性•酎旱性の強い品種を選択し栽培を行なう。実際の塩類土識はいろいろ なタイプがあり，塩類瀤度（ NaCl ）が高いだけでなく他 の元素の過剩あるいは逆に欠乏している土壌，高い pH ，酸珄硫酸塩土壤の場合には，鉄，アルミニウムの過剰や リン酸の欠乏など様々な要因により作物栽培には多くの制約を受けている。実際に酎塩性•耐旱性の強い品種の育種を目的に研究された例について，次に示す（加藤ほ か，1993）
（研究例1）フィリビンの国際稲研究所（IRRI）での酎塩性イネの選抜育種
東南アジアには，塩類土㙥地域が広く分布しており何百年も前から一部の農民により酎塩性を持ったイネの栽培が続けられてきた。これらの品種は，倒伏しやすい性質や病害虫に弱いために収量が低く 1 ton／ha（日本の米の収用の $1 / 5$ 以下）であった。IRRI では，中性の粘土質土塿に $0.5 \% \mathrm{NaCl}$ を加えて水田を作り，これに発芽後 2 週間のイネ幼苗を植えつけ栽培し選抜を進めた。約 10 年間で 6 万種の種子が供栻され，約 1 万の品種に酎塩性が確認された。強い耐塩性が認められたのは，在来品種か数種と IRRIが育成したIR 采統の品種か十数種選抜された。これらの酎塩性は塩分を含んだ闻場で栽培 され，約 4 ton／ha の収畳で非耐塩性品種の約 2 倍以上 の収量を示している。酎塩性品種の特長は，高ナトリウ ム環境下でカリウムを地上部へ集積する能力が強く，地上部のナトリウム懐度が低い傾向であることからカリウ ム，ナトリウムの選択性が高いことを示している。また，地上部のプロリン浮度が高いことも酎塩性品種の特長で ある．しかし，病害虫に対して弱いことから更に最新の バイオテクノロジーを用いた品種改良の取組が望まれ る。
（研究例2）トマトの耐塩性品種の作出
トマトは一般的に酎塩性の低い作物であるが，酎塩性植物の資碩調査を進めているおり，ガラパコスス諸島の海浜に自生している野生種のトマトの種類に耐塩性の強い個体が見出された。在来のトマトでは栽培土壤の塩類㳖度が低い間は地上部のナトリゥム涱度は低く抑えられて いるか，塩分謷度上昇と共に根での塩の吸収抑制機機が噇害を受け地上部へナトリウムが急速に愠䄳され枯死す る．一方，ガラパゴス諸島の海浜に自生している野生種 のトマト（果実は小さく，商品としての価値はない）で は，外界の塩分谸度上昇と共に地上部へのナトリウム移送が進み澴度上昇が見られるか，海水塩分滞度の 80%相当でも生育し開花結実をした。この野生種のトマトと在来品種との交配を進めた結果，果実の大きさがミニト マトほどの新種が育成された。この新種には，野生種と在来種の中間程度の耐塭性を備えていたことか報告され ている，この研究から知られるように，高塩性嫄境下で生育している植物は酎塩性植物を見出す㥜伝餈碩の宝庫 と考えられる。

様々な環境下で生育している植物は，現境に対して発揮される虺伝的特性はまことに多様である。塩類や乾燥 によりもたらされるストレスに対する植物の適応につい ての一部を紹介したが，まだ把握できていない部分が数多く残されているものと思われるが今後の研究の進展に期待されるところが大である。

最後に，本報告にあたり詳細な議論討論に参加して下 さいました日本沙漠学会沙漠工学研究分科会バイオグ ループの池部宗隆，池田 眔，小橋一民，小林登史夫，清水 俭，高木史人，辻 博和，遠山柾雄，長濱 直，新田義孝の各氏に感謝申し上げます。

引用文献

加葮 茂（1993）：アマングローブによる沙漠緑化への挑戟」日本沙漠学会紗淡工学研究分科会バイオケループ䋧。
 ルキタマシの塩類排出に関する研究。「日本海水学会誌」40： 196－204．
友社：123－154．
内山泰孝（1990）：アトリブレックスの耐塭性「熟帯農研集報」 59：15－24．
Aronson，J．（1989）：A data base of salt tolerant plants of the world．HALOPH，The University of Arizona，Tucson，Ari－ zona．
Black，C．C．，Golgstein，L．D．，Ray，T．B．，Kestler，D．P．and Mayne，B．C．（1976）： Co_{2} metabolism and plant production． University Park Press，Baltimore．
Kaneko，S．（1992）：Possible plant speceis for greening of arid
zones. Symposim on the Greening of the G.C.C. Countries, Tokyo: 143-147.
Key Words: Halophytes, Drought resistant plant, Sea shore Mangrove, Salt

IV．沙漠の風力エネルギーと風車

牛 山 泉＊

IV．Wind Energy in the Arid Lands and Wind Turbines

Izumi Ushiyama＊

1．はじめに

近年，地球の温暖化，酸性雨，熱帯雨林の激減，沙漠化，オソン屇の破壊など地球環境問題が国の内外で大き く取り上げられるようになった．ところが，われわれの生活圈である陸地の約 $1 / 3$ が沙漠であり，毎年 600 万 ha の土地が沙漠化しているという事実があるにもかか わらず，自国内に沙漠かないこともあって，わか国にお いては沙漠問題についての情報も少なく，これまでのと ころ沙漠現境はわれわれにとって馴染みのうすいもので あった。
玅漠化の原因は多岐にわたり複雑であるが，すべてに共通していえることは，人為的なもの，つまり政治，経済，文化の諸活動によるものであることは歴史が証明し ている．われわれは，まだ間に合ううちに英知を結集し て子孫のために住み良い陸地環境を保全する義務がある といえよう。
ここでは，沙漠の強い風を利用した風力ェネルキ゚ーシ ステムとこれを利用した沙漠化の防止，緑化の可能性な どについて考えることにする．

2．沙漠の風況

一般に沙漠では風が強いことが知られている。沙漠の地表の砂や土の温度は直射日光によりかなり高くなり，夏の沙漠では摂氏80度にもなることがあるという。こ の熱で温められた空気が膨服し，軽くなって勢いよく上空へ上っていく．すると，そこへ横から温度の低い空気 が吹き込んでくる。このため，沙漠ではほとんど例外な く横風が強いのである。これにより砂あらしか発生し，砂丘移動の原因ともなる。沙漠における風況の例として タクラマカン沙漠を取り上げてみよう。中国新朗省南西部に位置するタクラマカン沙漠は約 33.8 万 km^{2} の広さ

を持つ中国最大の沙漠で，周辺のオアシス地帯は沙漠か ら風によって運ばれる砂の被害をしばしば被っている。新乪省の風の特徵については吉野（1991）が気候学的な見地から既存の資料をまとめているか，ここでは長島ほ か（1992）による現地観測の結果から引用する。 この研究は沙漠化気候解明のため現地に即した砂輸送目公式を確立することを目的として，タクラマカン沙漠策勒地区 において気象要素，砂翰送典，砂面変化の自動観測を 1991年から継続して行なったものである。

図4－1は1991年3月13日より9月26日までの測定結果のうち，平均風速，最大風速，風向について示し ている。ここで平均風速はサンプリング間隔（1時間）内の算術平均値を，最大風速は同時間内に 2 秒以上続い た風速の最大値を表わす。最大風速は $20 \mathrm{~m} / \mathrm{s}$ に達する場合もあるか，平均風速は $5 \mathrm{~m} / \mathrm{s}$ から $10 \mathrm{~m} / \mathrm{s}$ 程度の範丼が継続して多く，風力利用の立場からは好都合といえ る。

海岸沙漠か内陸沙漠かによって風の吹きかたも進う が，カリフォルニアの半沙漠地帯で 19,000 台もの風車 により発電が行なわれていることからも分かるように，沙漠は風が強く地表粗度も小さいため風力利用の適地が多いようである。

3．沙漠における風力利用

沙漠は風況に恵まれていることが分かったが，この風 のエネルギーを何に利用するかが重要な検討課題であ る．基本は沙漠化の防止と緑化であろう．そこで沙漠に適した風車システムや風車の利用法を考えてみよう。こ れについては，真木ほか（1993）の報告がひとつのヒン トを与えてくれる。

真木らは中国北西部のトルファンにおいて，1990年 から1992年にかけて延べ 9 回， 307 日にわたって，防風施設として防風林と防風ネットを用いて気象改良効果

[^16]

図4－1．タクラマカン沙漠チーラ地区の風況（長嶋ほか， 1992 による）

図 4－2．トルファンにおける 1 列のタマリスク防風林による気象変化（真木，1991） A：1990年7月2日6時，B：1990年7月2日 12 時 U：風速，Ts：地表温，RH：相対湿度，Ta：気温

を観測している．図 4－2 はトルファンにおける夏季の極高温•乾燥期（1990年7月1～2日）の，タマリスク防風林（高さ 4.6 m ，密閉度 85% ）による減風•気象変化 を示している。この図から最低相対風速は基準風速の 10% 程度になり，減風範囲は風上 -10 H （高倍距離） ～風下 30 H ，主として $-5 \mathrm{H} \sim 20 \mathrm{H}$ であり，減風効果 は大きい。なお，ここで高倍距離とは防風施設の高さで表した距離であり，風上側をマイナス，風下側はプラス で表わしている。
防風林の効果•影響を要約すると，気象改良効果が大

きい，防風林による減風，春•秋季の昇温や夏季，夜間 の降温は好適である。タマリスク防風林は密閉度が高い ため減風効果が大きく，しかも細い枝葉による整流作用 のため減風効果範囲が広い。また葉からの蒸散によって加湿効果が大きく，乾燥地では有効である。また，複数列の防風林（ 50 m 間隔）では風上側の防風林の影響を受け，とくに湿度の場合にその効果が大きい，などの結論を得ている。

一方，防風ネットは高さ 1.9 m ，長さ 30 m のポリエ チレンラッセル網（密閉度 45\％）で，春季，高温•乾燥

図 4－3．防風効果を持つ各種風車列

期（1992年4月22～23日）の1列防風ネットによる気象変化も調べている。この場合にも，防風林と同じよ うな効果が得られ，加湿効果は小さいが，減風に伴う風食防止，飛砂防止効果は期待できる。また，防風林の生育には長年月かかるが，防風ネットは短期間に効果を発揮でき，防風林自体の生育保護用にも利用できる，など の結論を得ている。

そこで筆者の提案するのは，図 4－3に示すような風車列を沙漠の防風林や防風ネット代わりに設置することで ある．風車は種類によりソリディティ比（受風面積に対 する風車翼面積の比）が異なり，サボニウス型風車のよ うにソリディティ比が 1 に近いものから，ダリウス型風車やプロペラ型風車のように $0.1 \sim 0.2$ 程度のものまで各種あるが，これは防風林の密閉度に対応することにな る．したがって，ソリディティ比の大きな風車を近接さ せて設置すると防風効果が大きくなり，必要に応じて 2列， 3 列と複数列に設置することも可能である．そして， この風車により得られる電力を沙漠化防止や緑化のため のエネルギー源として使用するわけである。沙漠におけ るエネルギー利用としては，海水の淡水化による飲用水 や灌溉用水の確保，海岸沙漠などにおける除湿機駆動 （空中水分の捕捉），ポンプ駆動用動力，点滴灌溉用の動力，など種々のものが考えられる。

図 4－4．沙漠に適したソーラーチムニー

4．沙漠用の風車

1）沙漠に適した風車システム
ここで既存のものあるいは研究段階のものから沙漠用 に適した風車システムの例を調べてみよう。

1．ソーラーチムニー発電システム：これは図4－4に示すように中央に煙突状の構造物（チムニー）を建て， その周囲に広い透明カバーを敷き詰め，沙漠の豊富な太陽光で加熱され膨張したカバー下の空気が，チムニー内部を上昇する力で，チムニー下部に設けた空気タービン を駆動し発電するシステムで，構造が簡単で建築費が安 く，ある程度の蓄熱機能により夜間でも発電可能などの特徴がある．このシステムはドイツのJ．シュライヒによ り発案され，1982年にドイッとスペインの電力会社の共同プロジェクトとして出力 100 kW のパイロットプ ラントがスペイン中部のマンザナレスに建設され試験運転が行なわれた。チムニーの高さは 200 m ，直径 10.3 m ，プラスチックカバーで覆われた集熱フィールドは直径 250 m であった。（藤原•作田，1983）この集熱 フィールドは一種の温室であり，沙漠においてはこの中 で野菜の栽培など，いわゆるパビリオン農業も可能であ る。

2．ダクテット方式風車：プロペラ型風車のように揚力を利用するタイプも，サボニウス型風車やクロスフ ロー型風車のような抗力を利用するタイプもいずれも ディフューザやコンセントレータのような付加的な出力増強装置を装着することにより性能向上を期待できる。
とくに沙漠においては強風と共に土や砂の粒子が吹き付 けるため，風車のロータ部分を上記のような出力増強を兼ねたダクトによって覆うことにより風車性能の向上と

共にロータの保護も可能となる．図4－5はプロペラ型風車にディフューザを装着したものの外観を示し，（IGRA and Schlugasser，1978）図4－6は笽者の研究室で行 なったサボニウス型風車にディフューザとコンセント レータを装着したシステムの出力增強奻果の一例を示し ている（牛山ほか，1992）。

3．EFD 発電：通常の風力発電においては風車を用い て風のエネルギーを機㭜的な動力に変換するが，風とい う空気の迀動から直接変換により電力を得ることも原理的には可能である。これはEFD（エレクトロ・フルイド タイナミックス）発解またはEHD（エレクトロ・ハイド ロタイナミックス）発電などと呼ばれている（MinARDI et al．，1979）。図4－7 はその原理図で，これは静唃界を利用したエネルギー変換である。流体の流れの中に電極を㒹いてコロナを発生させ，流体粒子に荷電する。電気力 は流れを妨げる方向に御くので，これに逆らって流体が

図4－5．ディフューザによる出力增強法

図4－6．ディフューザによるサボニウス風車の出力增強法

流れ込むと，その機械的な力が電気エネルギーに変換さ れることになる。この方式は風車の回転力を経由せずに電気が得られるのが特徽であり，沙漠地帯のように砂や土の吹き付ける場所においては回転部分がないことは有利といえる。なお，この形式は静電機器の常として電磁形に比べて高電圧小電流向きの発電器であるから，利用 のためには適当な電力変換装置が必要となる。

2）沙漠の風車に関する注窓事項

沙漠に風車を設置する場合の注意事項としては，主と して砂塈対策と耐熱耐寒対策があげられよう。とくに，砂玅漠や土漠においては強風と共に土や砂の粒子が風車 に吹き付けるため，ブレードなど露出した回転部分の保護やベアリングへの土や砂の侵入を防止する必要があ る．例えば，フランスのアェロワット風車はサハラ沙漠 の通信用軍願にも用いられているが，アルミ合金製のプ レードを保訛するためネオプレン・ゴムを表面に巻いて いる．また，内陸部の沙漠では夏と冬で気温の差が 60度にも達するところがあり，この様な場所においてはブ レードの材質の選択や㵎閒油についても配閨が必要であ る。

5．珧境問題の解決に寄与する風力利用

風力発電をエコロジカルな視点から評価すると，例え ば，現在カリフォルニアの沙漠地帯などでゥィンド ファーム形式で運転されている 200 kW 級の風力発電装置1基を年平均風速 $5.5 \mathrm{~m} / \mathrm{s}$ の地点に設緽したとき，年間発電量は約 40 万 kWh であり，これを火力発電に より行なった場合と比較して，硫黄酸化物 $2.0 \sim 3.2$ ト ン，窒素酸化物 $1.2 \sim 2.4$ トン，二酸化炭素 $300 \sim 500$ ト ン程度が相殺できることになる。カルフォルニア州では 1988年に風力発電により年間 18 億 kWh の発電坦を記録したが，これは石油換算で2，832干バレルに相当 し，年間 220 万トンの二酸化炭素の排出防止に寄与した ことになる。

図4－7．EHD 発䉓の原理

このように，風力は化石燃料のように二酸化炭紊や硫黄酸化物，そして煤煙などを発生せず，原子力のように放射性廃棄物の心配もない。つまり，風力発電はこのよ うな隠れた「環境コスト」を削減できるのである。

したかっって，沙漠化の防止や緑化のためには環境を汚染しない風力や太陽エネルギーを活用すべきであり，特 に風車の設䍜は防風効果もあり一石二鳥といえよう。

6．おわりに

沙漠は不毛の地であると漠然と考えられているが，㬅業の立場からも（遠山，1993），エネルギー資願の立場 からも豎餛の地であるといえる，太陽エネルギー利用の立場からは「ジェネシス計画」のような壮大な提案がな され，世界の沙漠の 4% に太晹電池を設喆すれば世界の軍力を賄うことができるという（桑野，1992）．一方，沙漠は風力資源にも恵まれており，風と太峢光は相互補完関係にあるから，風力発電と太陽電池とを組み合わせる ことによって，より安定したより多くのクリーンェネル ギーが得られることになる。この睓富なエネルギー源を

活用して沙漠化の防止と緑化か強力に推進されることを期待したい。

参考文献

 ルギー」9－1．
桑野幸徳（1992）：「太際軍池を使いこなす」講談社フルーバック z：217－226．
真木はか（1993）：「沙漠縁化の级前線」新日本出版社．
長島ほか（1992）：「沙菼化機構の解明に関する国際共同研究，平成 3 年度成果報告诲」科学技術庁研究開発局．
遠山柾婎（1993）：「眇漠を緑に」岩波新昔．
牛山ほか（1992）：垂直軸抗力型風車の出力增強法に関する研究第14回風力エネルギー利用シンボジゥム，日本風力エネル ギー協会。
吉野正敏（1991）：新㟋の沙漠地帯の風と雨．「沙涘研究」1：1－15．
Igra and Schulugasser（1978）：Design and construction of a pilot plant for a shorouded wind turbine．Proc．of 2nd Int． Symp．of Wing Energy Systems．BHRA：F1－1－12．
Minardi et al．（1979）：Electofluid（EFD）wind driven genera－ tor．Proc．of Wind Energy Innovative Systems Conference．U． S．D．O．E．：89－100．

Key Words：Wind，Wind powered generation，Desert afforestation，Wind turbine，Wind turbine breaks

V．総合討論

V．Discussions

Q1：（国士館大•藤井）人文科学•考古学の立場加ら質間する。（1）沙漠工学や農学の研究を日本でやった方が よいと言うのはどういう意味があるのか，日本に沙漠 かないことから沙漠の研究者は海外で苦労をしている のだが，私は，メソポタミアで二十数年調査をしてき たが沙漠は面程が広い。灌溉と配水があれはは㻃業は可能である。粘土鉉物も豊富だ，しかし，日本か技術援助を与えられるかか疑問である。（2）日本で農業か自給 できないのは国の政治と国民性から，農業立国から工業立国に変わってきたためであろうが，アジアの乾燥地域や半乾燥地域で灌溉をして，日本のためにするの はむしか良すきる。
A：（筑波大•安部）（1）確かに日本には沙漠がないかっ，乾燥地を模擬し日本で研究できることもあるから，それ らを基に実質的な問題解決ができるように取り組みた い。（2）現在の日本の置かれている環境からすると，農業生産はその自給率を上げるべきであって，自給でき ないから生産を乾燥地や半乾燥地に求めるべきでない と思う。世界的食料生産から考え，乾燥地や半乾燥地 で水の利用技術，灌餀技術を研究し，農業生産を上げ られるよう研究しておくべきである。
Q2：（伊藤）（1）地下水か拧るような地下㭔造，地質はど のようなものか，（2）岩石そのものの放射性元索はない のか。
A：（清水建設•井伊）（1）調査地域の地質としては，第三紀堆積岩で，多孔質な岩石である。岩質としては，火山性の堆䅡岩，安山岩などがある。（2）岩石中からの放射性元素の供給は一般的にないものとして地下水の年柃を研究している。
Q3：（国士館大•藤井）（1）水萦の同位体元萦で水質の年代を何年前まで推定できるか。（2）地下水の䒜は現在の降水是に関係あるものと，無いものがあると思うか，化石水は汲めば無くなるのか。
A：（清水建設•井伊）（1）年代の話としてトリチゥムの話をしたか，その放射生物質の半減期によって測定範囲か決まる。トリチウムでは，半洁期か約 12 年なの で 100 年以上の古い水の測定はトリチゥムの泳度が小さくて難しい。トリチウムの他にトリチウムよりも半洁期の長い，半減期か約 6,000 年の ${ }^{14} \mathrm{C}$ や数万年以上の ${ }^{36} \mathrm{Cl}$ を使っても測定できる。（2）化石水は 10 万年， 1 万年といった長い時間をかけて流れてきたもの

で，短時間に汲み上げればすぐになくなる。現在の降水昷とは関係無い。
Q4：（近幾大•简井）酎塩性植物としての麦，トゥモロ コン，他はあと何年でできるのか。
A：（東京農大•加藤） $10 \sim 20$ 年内の単位では嚾しいと思う。西椙 2,000 年代に入ってからの課題であろう。
Q5：（JICA•牛木）乾燥地の内陸部にマングローフを植え，海水で濩澼する灌溉方法はどうか。
A：（東京農大•加藤）難しいと思う。一時期は根づくが長続きはしない。マングローブは海岸の潮の干満のリ スムが大切である。乾燥地の海岗線をマングロープの緑で回復させてから，内陸部へ植林を進めるべきであ る． CO_{2} の增加を防き CO_{2} の固定ができる。
Q6：（気象研•吉川）内陸部に海水を送り，大きな池を作りその周りにマングロープを植えられるか。
A：（東京農大•加藤）琵琶湖ほどの湖であればは潮洺が発生するかも知れないが，難しいと思う。また人為的 にすることは，うまく行くとは思わない。オオバヒル キ，オヒルギは，海水が進入している地域で潮汐のリ スムが作用する所によい。
Q7：（国土館大•藤井）ペンシャル湾にはマングローブ か分布していない。これに見合うものとしてナツメヤ シがある。ナツメヤシは周りか塩っぽい土垓に群生し ている．ナッメヤシは，実，幹，枝と有効な植物であ る．ナッメヤシは内陸部で群生しているか，マング ローブはどうして内陸部で群生しないのか。
A：（東京農大•加藤）ペンシャル湾の奥の方は，湖放が ほとんど無いので今の状態になったのではないか，ヒ ルギタマシ等のマングローブは昔から少ない。これは塩分暧度が高いのではないか，向後の実験でヤエヤマ ヒルギの実証をしているか，タコ足になるようなもの か有効となり，ヒルギタマシかよいと言われている。海水塩分暧度は $4 \sim 5 \%$ は駄目で， 3% なら生有する かも知れない。
Q8：（理研•遠藤）（1） 200 kW 程度の風力発電設備の擜用年数はどうか。（2）また，経済比較は，
A：（足利工大•牛山）（1）耐用年数は設備の筒所によっ て異なるが，羽根が 10 年くらいである。他の ちのは 20 から 30 年である。（2） M 社の ちのは 250 kW の風車が 7,000 万円，系統連揩まで含めて 1 億円である。発電コストの詳細比較ができていないか将来的には十

円以下になるであろう。
Q9：（清水建設•白石）風車を防風林，防風ネット代わ りにした場合，その後流の流れはどうなるか。
A：（足利工大•牛山）防風ネットは整流効果があるが，風車の後流は乱れる。 もとの流れにもどるのは，風車直径の 10 倍程度の距離である。風洞実験では，その乱れは防風林と同じ様な状態まで戻る。
Q10：（理研•違藤）（1）風のエネルギーに対して全ての風車が 60% がロスになるのか。（2）風切り音が発生す ると思うがオアシスでの騒音は，
A：（足利工大•牛山）（1）プロペラ形，タリウス形の効率 の良いもので $50 \sim 60 \%$ がロスで，オラン夕形風車で は 75% がロスとなる。（2）風車には騒音と電波障害が ある．プロペラ形が多く使われているが羽根の多い3枚の方が静かである。䥀音はある程度やむを得ない か，それほど高いとは思わない。主風向を考えて建設 すれば問題にならないのでは，オランダでは， 200 m離れたところで 40 dB にするように決めにかかってい る．
Q11：（気象研•吉川）エネルギーの保存方法として，圧搾空気拧蔵や揚水眝蔵の方法があるが，保存方法の検討はしているか。
A：（足利工大•牛山）圧潅空気は建設条件，方法による と思うが経済的でないと思う。揚水の方法はアメリカ で実施されている．小さければ湢雨池がある。発䉓の ネットワークと連系することで大きな貯蔵と同じ役割 を果たすことができると思う。

Q12：（筑波大•山口）タリウス形は風向に関係なく出力は一定だが，プロペラ形は風向によって出力が変わ るのか。
A：（足利工大•牛山）プロペラ形は風の主方向に向く ような構造になっている。
Q13：（成䠛大•小島）現在の化石燃料による電気エネ ルギーに対し，風力エネルギーのコストはどうか。
A：（足利工大•牛山）単体と公害対策の機器まで入れ て計算するかによって発電コストは変わるが，総合的 にみれば同じ程度となろう。
今年の8月に NEDO が発表したものによると，日本全体の風力エネルギー氟は 100 万 kW 原子力発電 20基分と言われている。また全世界では 200 基分である。 デンマークでは国の電力且の 3% が現在風車で賄われ ており，西暦 2,000 年には 10% を賄うとしている。ユ トランド半島では 40% も風車で発電されている地区が ある．

以上（敬称略）

文 責
結城邦之：（株）萑原製作所•環境事業本部
Kuniyuki Yuuki：Environmental Engineering Divi－ sion，Ebara Corporation

木下幹夫：（株）リコー・中央研究所
Mikio Kinoshita：Research and Development Center，Ricoh Company Ltd．

——沙漠シリーズ（2）——

南米太平洋岸沙漠の気候的特徵

ペルー・アタカマ沙漠の知見から

岡 秀 —＊
－Seminar on World Deserts（2）－

Climatic Characteristics of the Desert on the Pacific Coast of South America： From Some Observations in the Peruvian－Atacama Desert

Shuichi Ока＊

1．はじめに

海岸付近に発達する沙漠は，Meigs（1966）によって 14 の地域で確かめられている。それらはメキシコ北西部，ペルー太平洋岸，チリ太平洋岸北部，アルゼンチン南部，オーストラリア西海岸，オーストラリア南海岸，北アラビア海沿岸，ベルシャ湾，サウジアラビア南岸， ソマリ海岸，紅海，アフリカ地中海治岸，アフリカ北西部，アフリカ南西部である。これらは海岸に位蜀してい るという点では共通しているか，必ずしもその成因を同 じくしているわけではない。たとえばペルーやチリの太平洋岸に発達するベルー沙漠・アタカマ沙漠は亜熟帯高気任の勢力に加えて寒冷な海水がその成因として寄与し ているのに対し，アルゼンチン南部のバタゴニア沙漠は西風に対するアンデス山脈の雨除的効果によって成立し ており，陸地か狭いためにそれが海岸にまで達している ものである．ここではこういったさまざまな頝を持つ沙漠のうち，南米太平洋岸に発達する海岸沙漠に焦点を当 て，その気候的特徽について解説を試みる。

2．南米太平洋岸沙莫の成因

南米太平洋岸での乾燥はいくつかの要因の複合の結果 である．南太平洋には亜熱帯高気圧か定常的に発現す 3．この高気圧の東側では特に下降流が卓越し，断熱昇温によって貿易風逆転が形成される。高気圧の東側はア ンデス山脈によってプロックされているので，その定常

性はひときわ強くなる。この気温の逆転は地表からやや離れたところに形成されるので，高層逆転とも呼ばれ る．これだけでも大気は十分に安定するか，その安定性 は地表面の方からさらに強められる。大陸の西岸には寒流か流れるかっ，それはここではペルー（フンボルト）海流と呼ばれる。この海流は沿岸を北上するに従い，コリ オリのカによって左に反らされ，離岸する。そのような場所では，それを補供するように深層から繂昇流が発達 する．寒流それ自体も冷たいのであるかっこの涌昇流は深海起願なので一層低温である。これによって沿岸の下尼大気は冷やされ，逆転がさらに強化される。その結果，大気の対流活動は逆転局下限を上限にして㧕制され，降雨かほとんどもたらされずに乾燥することになるのであ 3．アンデス山脈のブロック効果は東からの湿った風に対しても発揮され，この地域の乾燥に寄与している。
図1に南米大陸の気候を規制する要因を模式化し，南米太平洋岸に沙漠が形成される原理を示した。南米大陸 は南太平洋高気压と南大西洋高気圧の間に挟まれ，内陸 に低圧部か形成されている。その低䋨度㑡はITC（熱帯収束），高䌊度側はボーラーフロント（寒帯前線）によっ て特徵づけられる（鉿木，1973）。熱帯収束や寒帯前線 は降水の原因となり，亜然帯高気圧は乾燥の原因となる かっこれらが南米の気候を規制する基本的な要因であ る，これらはいずれも季節に従って南北にシフトし，各地で李節による温度変化や乾季雨季の変化をつくり出す ことになる．しかし，太平洋に発達する亜熬帯高気圧は

[^17]

図 1．南米大陸の気候を規制する要因．
ITC は熱帯収束，PF は寒帯前線，H は亜熱帯高気圧，L は低圧部を示す。実線は1月，破線は7月の状热（Weischet，1970， Schwerdtreger， 1976 および野上， 1992 をもとに作成）

長大なアンデス山脈にブロックされ，季節による変化は さほど大きくない。このため，太平洋側では1月になっ てもそれに遮られて熱帯収束は南下できない。その限界 はエクアドルとペルーの国境付近で南緯 3 度ほど（矢沢，1961）である．熱帯収束が容易に南下し得るアンデ ス東側では1月は雨期となる。一方，低気圧を伴う寒帯前線は東進してアンデスにぶつかり，その風上側に雨を降らせる． 7 月にはそれであやや北偏する亜熱帯高気圧 の隙を狙うかのように北にシフトして低緯度側にも雨を もたらすが，その限界は南緯 31 度付近である（MiLLER， 1976）．かくしてその間に挟まれた地域は雨の降らない乾燥した領域となる。この乾燥の度合を一首確固とした ものにしているのが寒流，涌昇流の役割である．

この南米太平洋岸の一連のペルー・アタカマ沙漠のひ ろがりは，北限を熱帯取束の南下限界，南限を寒帯前線 の北上限界で判断すれば，おおむね南緯 $5 \sim 6$ 度から南緯30度までと見なせる（TrEWARTHA，1981）。ただし北限はかなりはっきりと識別できるか，時折，寒帯前線に よる雨が 27 度付近にまで達することがあるので南限は やや澎移的である（Lydolph，1973）。内陸側へは大気が安定した逆転局の高度がどこまで達しているかで決 まる．それは南䍃 7 度付近で約 $1,000 \mathrm{~m}, ~ 12$ 度付近

図 2．Bilma $\left(18^{\circ} 41^{\prime} \mathrm{N}, 12^{\circ} 55^{\prime} \mathrm{E}, 357 \mathrm{~m}\right.$ ，二 ジェール）と Arica $\left(18^{\circ} 21^{\prime} \mathrm{S}, 70^{\circ} 20^{\prime} \mathrm{W}\right.$ ， 55 m ，チリ）のクライモグラフ．
数字は月を示す（データは国立天文台， 1993 から）

で $1,600 \mathrm{~m}, 15$ 度付近で $2,200 \mathrm{~m}$ ，チリ北部で $3,000 \sim$ $3,200 \mathrm{~m}$ ，沙漠地域最南部で $1,000 \mathrm{~m}$ ほどである （Petrov，1976）．

3．南米太平洋岸沙漠の気候

チリ北部の Aricaにおける降水皿は，1961～1990年 の平均でも 1.1 mm に過ぎず，年によっては無降水とな る場合もあって，アタカマ沙漠が世界でも最も乾燥して いるといわれる由縁となっている。 しかし，前述のよう に，この沙漠は海洋に面していること，冷涼であること か特徽的であった。従って，逆転屈下の海洋大気へは海面から水蒸気が供給され，一方で泠却される結果，相対湿度は高くなる。特に太晹高度の低くなる南半球の冬に は地上気温はやや低く，また海水温も低くなるため，逆転屇の下限を上限にして層雲が形成されやすく，それが沿岸地域を覆う。南米の太平洋岸沙漠の沿岸部は雨は降 らないけれども，空気は大変湿っている。
図2はサハラ沙漠の一角を占める二ジェールの Bilma とアタカマ沙漠の Arica のクライモグラフであ る．これら 2 地点は Köppen の気候区分ではいずれも沙漠気候BWに位置づけられる。しかし，毎月の気温と湿度で評価してみるとその様相が全く異なることが分か る．すなわち，Bilma では暖候季は $33^{\circ} \mathrm{C}$ 以上，寒候季は $17^{\circ} \mathrm{C}$ 以下となって気温の年皎差が大きく，年間を通じ て湿度はほぼ 30% 未満であるのに対し，Arica では気温は暖侯季に $22^{\circ} \mathrm{C}$ ，寒候季に $15^{\circ} \mathrm{C}$ をそれぞれようやく

図 3．ペルー中部および南部における降水の季節変化（RAUH，1958）．

上回る程度で年皎差は小さく，湿度は年間を通じて 70～80\％を保っている。

Arica の気候について，日変化の側面からもう少し見 てみよう，日最高気温，日最低気温の月平均の差は 2 月 に $6.8^{\circ} \mathrm{C}$ となって最大， 8 月には $4.0^{\circ} \mathrm{C}$ となって最小を示す。時刻別の相対湿度の月平均を見ると 20 時には寒候季でやや高くなるが通年ほぼ $70 \sim 80 \%$ を示す。日中 の 14 時であ通年 50% を下らないが，寒候季にはそれ はひときわ高くなり，65\％前後となる。このように，気温や相対湿度の日変化は1年を通して比皎的小さいか，寒候季にはそれが一㢄小さくなり，空気は1日中かなり湿っていることが分かる。

ペルー・アタカマ沙漠の気候に特有な湿潤な大気は，寒候季には明挠な屈雲の形成という形で現われる。これ が地表付近に接するように発生すると笧として認識され る．これはペルーではネブリーナ neblina と呼ばれ，チ リではカマンチャカ camanchaca と呼ばれる。これら は後述するようにいずれも水資獂として重要な意味を持 つ．この層雲の発生は大気中の水蒸気䦎に制約されなか ら，その発達の程度は大気の安定性に委ねられている。 すなわち，大気下莌は低温ながらも逓減していて不安定 であること，その上部には逆転甬があって安定している

ことか層雲発達の条件となる。これらの条件は季節変化 をするだけでなく，日変化も示す。寒候季には1日中湿気が多くなるが，それでも層雲は特に夜半から朝方にか けて低く垂れ込めることが多い。図3はRAUH（1958） によって描かれたペルー中•南部における降水の季節変化を示す模式である。これによれば，冬（5月～10月） には蓩を伴った冷たく湿った風が太平洋から吹き込み，沿岸地域を澓っている。その際，海岸山脈にぶつかるよ うなところでは霧が地表面を濡らし，ガルア garúa と呼 ばれる篓雨か降ることもしばしばである。しかし，内陸 に入ると昇温し，たちまち螌は消え，沿岸部とは異なっ た気候的性格となる。一方，夏（11月～4月）には太平洋から吹走する風は比皎的暖かい海岸部を吹抜け，その ままアンデスの斜面を上䒜する，そのため層雲の発生頻度は少ない。この風は高山地域に降雨をもたらし，さら にこの地域にはこの時期南下した熱帯収束に伴う東から の降雨が及んで，雨季となるのである。
沙漠地域における湿垌な大気環境形成の原因となって いるペルー海流は，南米太平洋沿岸を南緗 40 度から南緯 5 度にわたって流れている。しかし，それはこの沿岸地帯にどこでも一様な気候をもたらしているわけではな い。海水温を規制する海昇流の強弱や卓越する南－南西

表1．1971年8月のペルー沿岸地域の降水．

地 点	降水禹 (mm)	降水日数 Paramonga	$10^{\circ} 40^{\prime} \mathrm{S} 60 \mathrm{~m}$
Lomas de Lachay	$11^{\circ} 21^{\prime} \mathrm{S} 250 \mathrm{~m}$	2.1	10
Campo de Marte	$12^{\circ} 04^{\prime} \mathrm{S} 30 \mathrm{~m}$	34.7	29
Pisco	$13^{\circ} 44^{\prime} \mathrm{S} 6 \mathrm{~m}$	6.4	17
Atiquipa	$15^{\circ} 47^{\prime} \mathrm{S} 255 \mathrm{~m}$	0	0
Camana	$16^{\circ} 35^{\prime} \mathrm{S} 40 \mathrm{~m}$	71.8	4
Mollendo	$17^{\circ} 02^{\prime} \mathrm{S} 30 \mathrm{~m}$	10.6	5

表 2． 1991 年のチリ北部沿岸地域における降水．

地 点	降水廙 (mm)	降水日数 $(0.1 \mathrm{~mm}$ 以数 $)$	
Arica	$18^{\circ} 28^{\prime} \mathrm{S} 100 \mathrm{~m}$	0.4	1
Iquique	$20^{\circ} 13^{\prime} \mathrm{S} 9 \mathrm{~m}$	0	0
Antofagasta	$23^{\circ} 26^{\prime} \mathrm{S} 119 \mathrm{~m}$	14.5	2
Copiap6	$27^{\circ} 21^{\prime} \mathrm{S} 370 \mathrm{~m}$	59.1	8

風のふるまいによって地域差が現れ，気塊の特性は陸上 の地形条件によっても変化を受ける。従って，首雲の発達程度にも地域差が生じる。ところで，層雲の上限は逆転屠下限か規制する。これらの高さはペルー中部（Lima， $12^{\circ} 00^{\prime}$ S）で $600 \sim 800 \mathrm{~m}$（Prohaska，1973），チリ北部 （Antofagasta， $23^{\circ} 26^{\prime} \mathrm{S}$ ）で 900 m ，チリ中部（Quintero， $32^{\circ} 47^{\prime}$ S）で 500 m （Miller，1976）となっている。ヘ ルーで降水是分布を加味して検討した結果（ОкА and Ogawa，1984）を見ると，中部でやや低く（ 500 m 前後），南部で高くなっている（ $1,000 \mathrm{~m}$ 前後）．これらか ら判断すると，雲の上限はベルー南部，チリ北部を中心 に高く，その両㑡に低くなる。一方，雲の下限はチリ北部では $500 \sim 800 \mathrm{~m}$ ，ベルー中部やチリ中部では $400 \sim$ 500 m より低い（MILLER，1976）
沙漠といえども雨が皆無というわけではない。しかし その降り方は独特である。海洋からの継続的な移流で逆転層下に集中した水蒸気は夜間には盷和状俧となり，あ わせて雲の上面から外に向かっての長波放射の結果，強 い泠却が生じるため，逆転屈下の大気下呞では不安定度 か増し，ガルアか降り出すことがある。この夜間から朝 にかけての特徽的な現象はペルー沿岸では南綼8度以南で寒候季には普通に見られる。ベルーのリマ空港で は，1967年の冬（5月～9月）にはガルアか877時間 （全体の 27% ）観測されたか，その総降水䦎は 6.1 mm に過きなかった（Johnson，1976）．いかに強度の小さい雨 か降っているかが分かる。1971年8月を例にして，ペ ルー沿岸地域における雨の降り方を表1に示す（岡•小

川，1982）．明らかに南緯 13 ないし 14 度付近を境にし て降水形雍に差があるように見える。すなわち，その北側では降水量に対して降水日数が多く，南では逆に降水強度が大きくなる。これは南部で逆転尿の下限から高くな り，層雲の厚さが增す傾向にあることと関係するのかも知れない。1991年の降水舟でチリ沿岸地域についても同様に調べてみると，表2のようになる。北部の少雨に比ベ，Copiap6 では明らかに状況か異なっており，ここ には南方からの雨の影鱀が及んでいることを窅わせ $ろ^{\prime \prime}$ 。
ところでペルーとエクアドルの境界付近の沿岸には毎年12月の頃から暧かい海水が流れ込む。これはエル ニーニョ海流と呼ばれ，暖水性の魚や熱帯性の果実など を迎び込むので沿岸漁民に歓迎される。しかし，時とし て暖水塊は異常に発達し，より南方へ達する。1925年3月，このために Lima 近郊の Callao 港计合の水温は平年で $19^{\circ} \mathrm{C}$ のところ $25^{\circ} \mathrm{C}$ にまで上昇した（Johnson， 1976）．エルニーニョ現象である。この暖かい海水は大気 を暖め，水蒸気艒を增大させ，大気の安定屏を破壊する。活発になった対流活助は雨の降り方を一変させ，沙漠に晸雨をもたらすことになる。この一連の現象は熱帯収束 の突然の南下に対応する。この年，Chicama（ $7^{\circ} 43^{\prime} \mathrm{S}$ ） で年降水皿は 394 mm （平年 4 mm ），Lima で 1,524 mm （平年 $46 \mathrm{~mm}^{22}$ ）を記録した（グーディー・ウィル キンソン，1987）。また，Trujillo（ $8^{\circ} 05^{\prime} \mathrm{S}$ ）ではそれ以前の7年間の平均が 35 mm であるのに対し， 1925 年 には3月だけで 395 mm を記録した（Jornson，1976）．

写真 1 ペルー中部の Ancón（ $11^{\circ} 45^{\prime}$ S）付近のロマス（1980．10．14）

最近では1983年に顕著なエルニーニョ現象がみられ た。ペルー北部Piura（ $5^{\circ} 12^{\prime} \mathrm{S}$ ）付近では，年降水量の平年値か数 10 mm 程度にあかかわらず，1982年12月～ 1983年6月の 7 力月間で $5,000 \mathrm{~mm}$ を超すような降雨 がもたらされたところもあったという（TAGAMI，1987）． この期間で，降水量 500 mm 以上に達した月ごとの降水域に注目すると， 12 月にはエクアドル中部アンデス山麓部に中心があったが，4月には降水域を広げながら中心はペルー北部まで南下し，5月以降は中心が再び北上し，分布域も縮小した（TAGAMI，1987），この雨は夜に集中し，降水範囲はペルー北部以北で海岸からアンデス中腹までに限られるという特性を示した（野上，1984） という。

近年にエルニーニョ現象が生じた年をあげてみると 1925，1932，1939，1951，1953，1957，1965，1969， 1972 ～73，1977，1983，1986～87，1991， 1993 などというこ とになる．最近ではこのような海水温の上昇をもたらす現象はペルーやェクアドル沿岸に限られたものではな く，広く赤道太平洋にまで及んでいる大規模な現象であ ることが分かってきており，それから波及するさまざま な現象も含めてより広域的な説明がなされている（RAS－ musson and Carpenter，1982）．

4．南米太平洋岸沙漠の生活

アンデス山脈からの豊かな流れは沙漠を刻み，その沿岸にはオアシスができる。沙漠地域における人々の生活 はここを中心に営まれる。しかし，海岸沙漠特有の気候 は，それ以外にいくつかの特徴ある生活をつくりだして いる。

太平洋岸沙漠の気候を特徵づける沿岸の泠水塊にはプ ランクトンが豊富に含まれる。これは魚の伹として提供 され，アンチョビなどが集まって沿岸海域は豊かな漁場 となる．それを狙って海鳥たちも集まり，太平洋岸沙漠 の沿岸は海鳥たちの格好の棲息地となる。かくして海鳥 たちがすみついた島や岬には彼らの粪が大量に堆積す る．それは乾燥した気候下では雨に流されることもな く，しっかりと固まり，時には数 10 m の厚さのグアノ となって燐酸肥料の原料として活用され，沙漠の土を潤 すことになる．海岸沙漠ならではの物質循環である。
太平洋岸沙漠を覆う霧は，時として濃く低く垂れ込 め，ガルアとして落下して地表面を湿らせる。このよう なことが頻繁に起こる季節になると砂の中で休眠してい た植物の種子が発芽し，草原が発達する。これはロマス Lomas と呼ばれる（写真1），ロマスは冬の間の水供給 によって発芽の機会を窺い，春から初夏にかけて発芽 し，開花する．草原ができ，花が咲くと昆虫たちが集ま り，トカゲやサソリが這廻り始める。さらには鳥が飛び， キッネなども活動を始める。喰うものと喰われるものの序列の中で，沙漠の砂の上にはさまざまな動物たちの足跡がにぎやかに刻み込まれる。人間たちも例外ではな い。どこからかロマスができたという情報が伝わると人々はヒッジやヤギをつれて集まってくる。時にはアン デス高地からはるばるやってくることもある．沙漠は放牧地へと一変する。アンデス高地からやってきた人々は ロマスで放牧をする傍ら，海岸へ出て海藻（コチャユー ヨ）の採集をする（MASUDA，1985）．採集された海藻は乾燥させてアンデス高地に持ち帰り，商品にするのだとい う．ロマスは交易にも重要な役割を果たしている。

自然環境の資源を活かした生活がここにはある。た だ，大地を流しきってしまいそうな大雨が時には降り，一方ロマスを成立させるほどの水供給でさえ毎年毎年保証されているわけでもないというところに，安定した生産を支えきれないジレンマがある。

だが，この沙漠には雨䦌計では捉えきれない水資碍が秘められている。ペルー中部 Lomas de Lachay ではユ ネスコの援助で作られた底面積 $25 \mathrm{~m}^{2}$ ，高さ 4 m のピラ ミッド型の籍捕捉装置で1日当たり100リットルの水 を集めることができたという。同じくペルー中部の Ancon 付近では幅 10 cm ，高さ 100 cm のネットでさ え1日当たり 600 cc の水を集めることができた（ OkA ， 1986）．これを計画的に集約し，かんがい用や家庭用に活用しようという試みかなされるの 6 当然である。現在， チリではこの笧水活用の是非が検討され（Schemen－ AUER et al．，1988），その水質さえ吟味されている（Sch－ menauer and Cereceda，1992）．

5．南米太平洋岸の気候変化

ペルー北部海岸地域には，現在は枯れ川となっている谷筋にも，広い扇状地や大磁や巨礫を含む河成段丘の発達の著しい谷が見られる（Kikuchi and Hirakawa， 1987）．これは過去にこの地域で著しい多雨の時期が あった証拠である。野上（1972）は南緯 $15 \sim 20$ 度付近で最終氷期の雪線低下罩が大きいことから，当時はこの付近までの熱帯収東の突然の南下，すなわちェルニーニョ現象が頻繁であったに连いないと考えた。しかし，一方 で鈴木（1973）はいくつかの地形的な特徴や気候資料か ら判断すれば熱帯収束，寒帯前線とも北偏していたと主張する．いずれの考えが妥当であるにせよ，最終氷期に はペルー沙漠の北限が南偏していたか，アタカマ沙漠の南限か北偏していたことになり，沙漠の領域は現在と相当異なっていた可能性がある。

Kikuchi and Hirakawa（1987）によれば，ペルー北部でいくつかの磁屇中に含まれる木片の ${ }^{14} \mathrm{C}$ 年代を調べ た結果，約 1,200 年前と約 1,700 年前に集中したとい う．このことは，その時期に土石流を発生させるような豪雨があったことを示しているが，その当時は温暖期に相当する．逆に小氷期といわれる時期には土石流の発生 は確認できないばかりでなく，低地の泥質堆積物は風成営力の增大，すなわち乾燥化を暗示しているという。 Kıkuchi and Hirakawa（1987）は後氷期におけるこの地域の気候変化について，温暖期に湿潤であったという推定をしつつ，この地域は水期に必ずしも寒冷化してお らず，従って湿潤であったという可能性を論じている。湿潤な時期には沙漠を季節的に緑で覆うロマスもかな

りのひろがりを持っていたに達いない。COHEN（1977） や Lanning（1965）らによる考古学的見地から，Ancon などのペルー中部でのロマスの利用は，はっきりしてい るところで紀元前 $8,000 \sim 7,000$ 年までさかのぼる。こ の時期，人々は冬には広大に広がったロマスに降りて キャンプをつくり，野生の植物やロマスに棲息するカタ ッムリを取って食べていた。またトカゲアアナフクロゥ を捉え，ロマスの草をはみに来るシカヤグアナコを捉え て暮らしていたともいう．紀元前 5,000 年ほどになる と，カボチャの栽培なども行なわれ，農業の芽生えも見 られた。 しかし，それは次第に生産力の衰え始めたロマ スでの食椇資願の補充という意味あいが強かったらし い。従って，その後紀元前4，500年くらいになると人々 はロマスを捨て，泠水塊に由来する贯かな海産物を利用 すべく，海岸に降りてしまったという。これらの変化は世界がヒプシサーマルと呼ばれる温暖期から寒冷化に向 い始める頃に起こっているように見える。この時期，少 なくともアンデス山脈東側では同時に乾燥化も進行して いる（鈴木，1990）。
かつて，現在のロマスの規模からは想像できない䀘か な姿がそこにはあった。このロマスの衰退について COHEN（1977）は人口圧を主たる原因としてあげる。一方，Lanning（1965）は乾燥化という気候変化の影扨を あげた．いずれにせよ，現在の沙漠化問題を念頭にする とき，いかにあ象徴的ではある。ロマスの段的な衰退は， やはり寒冷化／乾燥化という気候変化の過程での資源の過剰利用がきっかけをつくったのではなかろうか。小野 （1993）は1950年代にはまだかなりのロマスが発達して いたことをよりどころに，その衰退はコロンブス以降の 500 年間で見たとき，同じペースで進んだのではなく，今世紀の半ば以降に急速な変化があった可能性を示して いる．例えば，Lima の降水量を見ると近年減少傾向に あり（OkA and Ogawa），乾燥化の進行か窺えるか，これ に加えて人々の加速度的な入植がロマスの㥶退に結びつ いているのではないかというわけである。南米太平洋岸 あ世界の乾燥地域で進行する沙漠化の例外とはなり得な いのである．

注

1）1991年6月17日，南方起䂺と思われる雨が Copiapo で 31.7 mm 降った。 さらにこの雨は Antofagasta まで達して 14.1 mm を記録し，死者約 50 名を出す災害を引き起こした。 2） $1961 ~ 1990$ 年の平均値（理科年表）では 1.1 mm である。

引用文献

グーディー，A．・ウイルキンソン，J．，日比野雅俊訳（1987）：「沙漠の环境科学」古今㟫院．Goudie，A．and Wilkinson，J． （1977）：The warm desert environment．Cambridge Univ． Press．
国立天文台編（1993）：「理科年表，平成6年」丸善：362－363．
野上逆男（1972）：アンデス山脈における哯在および水期の雪線高度の分布からみた氷期の気候。「第四紀研究」11：71－80．
野上逆男（1984）：ペルーの「ェルニーニョ晛象」「地理」29－11： 70－78．
野上道男（1992）：氷期のアメリカ大陸 赤涩 威•阪口 豊•宫田幸光•山本紀夫編：「アメリカ大陸の自然誌，2．最初のアメ リカ人」岩波書店：38－55．
岡 秀一•小川 登（1982）：ベルー海崀砂漠におけるロマス植生の分布。小野幹婎編：「南米太平洋茾吵漠に成立する季節草原ロマスの生悲と䖽分化に関する研究（予報）」牧野標本館： 19－35．
小野幹雄（1993）：森林の改変．赤滓 威•阪口 䒼•宫田幸光•山本紀夫編：「アメリカ大陸の自然誌，3．新大陸文明の盛衷」岩波诽店：193－234．
鈴木秀夫（1973）：南アメリカとくに西岸の気候とその変化．「地理学評論」46：1－29．
鉿木秀夫（1990）「気候の変化が言葉をかえた」 NHKプックス 607，日本放送出版協会。
矢沢大二（1961）：アンデスにおける気候学的観察ならびにそれ にもとつく若干の考察．東京大学アンデス地帯学術調查団編：「アンデス」美術出版社：17－42．
Cohen，M．N．（1977）：Population pressure and the origins of agriculture：An archaeological example from the coast of Peru．Reed．C．A．ed．：Origins of agriculture．Mouton Publ．： 137－177．
Johnson．A．M．（1976）：The climate of Peru，Bolivia and Ecua－ dor．Schwerdtfeger，W．ed．：Climates of Central and South America．Elsevier，Amsterdam：147－218．
Kikuchi．T．and Hirkawa．K．（1987）：＂El Niño＂phenomena and climatic change in the past from the quaternary geol－ ogy and geomorphology of coastal region of northern Peru．Nogami，M．ed．：Rain and river discharge during 1983 El Niño event and geomorphological significance of the past El Niño phenomena in the northern Peru．Dep．Goegr．，Fac． Sci．．Tok yo Metropol．Univ．：9－25．
Lanning，E．P．（1965）：Eary man in Peru．Scientific American． 213：68－76．
Lydolph，P．E．（1973）：Causes of aridity along a selected group of coasts．Amiran，D．H．K．and Wilson，A．W．eds．： Coastal deserts：Their natural and human environments． Univ．Arizona Press，Tucson：91－107．

Masuda，S．（1985）：Algae collectors and Lomas．Masuda，S．， Shimada，I．and Morris，C．eds．：Andean ecology and civiliza－ tion．Univ．Tokyo Press：233－250．
Meigs，P．（1966）：Geography of coastal deserts．UNESCO，140p． Miller，A．（1976）：The climate of Chile．Schwerdtfeger，W． ed．：Climates of Central and South America．Elsevier，Am－ sterdam：113－145．
Ока，S．（1986）：On a trial measurement of the moisture in fog on Loma Ancon－In relation to an investigation into the conditions required for development of lomas com－ munities－．Ono，M．ed．：Taxonomic and ecological studies on the lomas vegetation in the Pacific Coast of Peru．Makino Herbarium，Tokyo Metropol．Univ．：41－51．
Ока，S．and Ogawa，H．（1984）：The distribution of lomas vegetation and its climatic environments along the Pacific coast of Peru．Geogr．Repts．Tokyo Metropol．Univ．，19：113－ 125.

Petrov，M．P．（1976）：Deserts of the World．John Wiley \＆Sons， New York．
Prohaska，F．J．（1973）：New evidence on the climatic controls along the Peruvian coast．Amiran，D．H．K．and Wilson，A． W．eds．：Coastal deserts：Their natural and human environ－ ments．Univ．Arizona Press，Tucson：91－107．
Rasmusson，E．M．and Carpenter，T．H．（1982）：Variations in tropiccal sea surface temperature and surface wind fields associated with the Southern Oscillation／El Niño．Mon． Wea．Rev．，110：354－384．
Rauh，W．（1958）：Beitrag zur Kenntnis der peruanischen Kakte－ envegetation．Springer－Verlag，Heidelberg．
Schwerdtfeger，W．（1976）：Introduction．Schwerdtferger， W．ed．：Climates of Central and South America．Elsevier． Amsterdam：1－12．
Scemenauer，R．S．and Cdereceda，P．（1992）：The quality of fog water collected for domestic and agricultural use in Chile．J．Appl．Meteor．，31：275－290．
Scemenauer，R．S．Fuenzalida，H．and Cereceda，P．（1988）：A neglected water resource：The camanchaca of South Amer－ ica．Bull．Amer．Meteor．Soc．，69：138－147．
Tagami，Y．（1987）：Precipitation in northern Peru during El Niño．Nogamı，M．ed．：Rain and river discharge during 1983 El Nino event and geomorphological significance of the past El Nino phenomena in the northern Peru．Dep．Goegr．，Fac． Sci．，Tokyo Metropol．Univ．：29－43．
Trewartha，G．T．（1981）：The earth＇s problem climates．Univ． Wisconsin Press，Madison．
Weischet，W．（1970）：Chile－Seine Ianderkundliche Individual－ itat und Struktur．Wiss．Länderkunden，2／3．

＂n＂un＂書 評

真木太一•中井 信•高㚼 滋•北村義信•遠山柾雄（著）：砂漠緑化の最前線 餇査•研究•技術 新日本出版社， 214 ページ，2，800円。

本書に敬意を表わし，以下では吵漠という字を使わせ ていただく，日本沙漠学会の怕評ではあるが，
まずはまえがき，いまさら述べるまでもない，砂漠化 は地球璟境問題の重要なひとつである。多分最も多くの人類の命を奔う間接，直接の原因となっている。食椎問題，そして内紛，地球珼境問題というと，オソン屈破壊，地球温暖化，酸性雨をまず頭に浮がごる。しかし「まだ」 このために亡くなったという人は，思い浮かばない。な のに日本では砂漠化にまで思い至らない。日本に钞漠が無いからだろうか？鳥取砂丘はあっても。
評者は，むしろ眇漠よりむしろエネルギー／地球温暖化問題を専門とする，また分野としても工学に籍をおく人間である。そのような人間が，本费の著者をほぼどこ かでおみかけしているのである，親しくおつきあいさせ ていただいている方すらいる。（いわしづくし，ごちそう さまでした。）著者は全員日本沙漠学会員である。
本费の目的は，「類型」と「体験」であると拝見した。 その「体験」をお持ちの方が何人日本におられるのか。 それも，私のような「にわか」 沙漠学会員ではなく，私 のようにほんの数力所しか知らず，それも駆け足で見て きたような人間ではなく，じっくり腰を据え，砂漠で「幕らして」きた方が，もちろん他にもおられようが，本書の目的から考え，「必然」ともいえる執筆者である。
本费の構成は一I．最近の世界の砂漠化と緑化（真木，以下敬称略）に続き，各論にはいる。
II．中国の砂漠化と緑化（真木）：氏は前费「吵漠の中 のシルクロード一㤵久の歷史」（真木太一，真木みどり著，新日本出版社）のあとがきにもあるように， 1986 年 に初めて中国を訪れ，1990年からの熱帯農業研究セン ターと新㢮生物土壤沙漠研究所との「乾燥地域における环境答獂についての共同研究」にも参画する。氏の中国 に関する体験の豊富さと，データに裏打ちされた記述，特に風などの気象に関する記述には感心させられる。気象データ観即点が，沙漠の代表ではなく，沙漠の中の特殊気候であるオアシスでの測定となりやすいこと，ある いは，体感風速は最大値であり，普通平均値で記述され る風速との食い轱い等々。
 として気象からのアプローチであるのに対し，IIIは土

痖からのアプローチである。自然条件が少し変われば土
人為的活動の，よい意味での影響の大きさか凅象的であ る．沈䁃千万年の草も生えない土淁を，㥞々な努力によ り次第にプドゥの生産に適した土埌に変えてきた歴史。塩類の洗脱•水の重要性と，運々としていなからも，し かし確実な歩みの重要性が示唆されている。
IV．アジア牧畜地帯の過放牧と砂漠化（高㚼）：ここで の対象は草地である．シリア，バキスタン，モンゴル。農耕民族の我々には理解できない世界でもある。過放牧 は，遊牧社会の外からの力ではなく，自らの自覚と将来展望による変革を，と力説している，地域しベルに端を発する「地球珸境問題」に対する私達の任務は，助言と援助であるとの立場である。
V．アフリカの秒漠化と開発•緑化（北村）：人道的見地からも危ぶまれる地域，人口問題，そしてアフリカの水文珧境から，他の陸地に比へ非常に過酷であるためであ る．世界地図を見ると，雨の降りにくい，大気循環の沈降域にこの大陸のほとんどが属している。この本の他の力所にみられる様々な問題のいずれもからこの大陸にもみ られる。ここでも，殿民と牧民との共生関係か鍵として あげられている．
VI．アメリカの吵漠化と緑化（遠山）：アフリカと対照的に私達には豊かな国というイメージである，サハラ砂漠のような大形漠があるわけであない。しかし，それで も，ここで取り上げられている，カリフォルニア，メキ シコ，ペルーをはじめ，塩類化のような様々な問題か生 じている，最後に述べられているように，整溉などの人為的影響が大きい。しかし点滴灌便，保水剤活用のよう な，近代的節水農業の場合にはむしろ砂地のような毛管 かっなかららない土境の方が望ましいとも述べている。

さて，一般論はどうなのだろう，アメリカでの近代的節水農業の手法は，アフリカに使えるのか？牧畜地帯 はどうなのだろう。
技術論としては，「類型」から「典型」へ進むことか梨 まれる．IIの最後に記されているように「人進沙退」の ための自然科学者，社会科学者の共同，そして評者とし てはこれに技術者も加えてほしい。形漠技術から複合学 としての砂漠学，沙漠学への進化と体系化，その恙味で本婁は日本沙漠学会にとっても最も重要な「磷」となる一冊であろう。日本沙漠学会も，ちょうど 1993 年に日本学術会議に認められたばかりである。
（小島紀徳：成旗大学）

小島紀徳（編著）：緑がつくる地球の環境 オー ム社， 149 ページ，2，200円。

本曽は地球瓄境セミナー（全 7 巻）の第 5 巻として出版された。「みどり」に主眼を置いた地球環境のわかりや すい解説書は，あまり多くないので，存在価値は大きい。 5 名の分担執筆よりなり，テーマに若干のだぶりあみら れるが，各著者の筆致からはそれぞれの特徵がにじみで ている。それだけに，編著者だけで，各著者の紹介がな いのは惜しまれる。 もし紹介があったならば，文献とと もに，本書をきっかけとして多様なテーマに関心を深め ていこうという際にも役だったのでは…。
「人間活動とェコシステム」のなかでは「生態系に対す るマイナスのインパクトは聂終的には危害を人間に フィードバックさせる」と憼鏑する。そして，水田こそ日本が誇るべき資源であると力説する。水田は深層地下水の水源として，洪水を防ぐ働きがあり，傾斜地での棚田などを含めて，およそ 85 億 t あの眝水能力をもち，全国 320 のダムによる総眝水量 20 億 t の 4 倍以上にあ たることが紹介される。この例が示すように，農業生態系の舆深さ，巧妙さについて多角的にふれ，われわれは もっと日本特有の農業システムに自信をもち，大切に維持していくべきことを教えてくれる。

「破壊か進む熱帯雨林」では，農地植生や森林がェント ロピーの劣化阻止の役割も果たすこと，森林の効果が多機能で豊かな生態系を形成していることが，雲雾林など の具体例をもとにわかりやすく解き明かされる．森林の種類別にみた機能•価値も図解され，造林に際し参考に なりそうだ，ただ，二酸化炭萦の吸収源を原生の熱帯雨林に求めることは無理だという。一般「常識」からは理解しにくい点であるので，さらに詳しい解説がほしいと ころではあった。

いま各方面で論議を呼んでいる，二酸化炭素のミッシ ングシンクの問題では，フィックの法則に触れて，慣用的に引用されることの多い炭素の流れ概念図の矛盾点を鋭くついている．植物プランクトンの発生•死滅が二酸化炭素の消長に深くかかわっていることも示㖫される。海洋に関する研究には，まだ解明すべき末知の世界が広 いことを悀感させられた。

さて，「進行する砂漠化」では実地調査に基づいた悬富 な知見と，今後の研究発展の基盤が徐々に築かれてきた過程が紹介される．ただし，「砂漠化と周期的に繰り返さ れる干ばつとの間には区別がない」については異論があ
る．乾季（筆者は乾期を用いているが，dry season であ り，一季節を画しているのであるから，季を使用するの

が適切，と評者は考える）は周期的にやってくるが，干 ばつの発生頻度に明確な周期があるという報告はない。 したがって，周期性という用語を使うと誤解を招く恐れ がある．また確かに，干ばつは砂漠化を助長する。しか し，干ばつは砂漠化の要因の一つに過ぎないのであり，両者はメカニスムも時間スケールも異なっているのでは ないか？といった疑問も浮かんでくる。

沙漠緑化へのひたむきな姿勢には頭が下がる。「もと もと砂漠であるところを緑化する場合には熱，物質の両面から敨密な収支計算を行い……調節しておかないと，逆に破壊につながりかねない」ということは，沙漠地域 のみならず，緑化に㮩わる際には銘記すべき教訓であろ う．近い将来，人口增加に伴う食粗不足が国際問題とな ることは不可避であり，これまで繰り返されてきた〔森林開塱 \rightarrow 土地荒廃 \rightarrow 水害発生〕 という悪しき図式を考風 しても，沙漠の緑化を試み，農業の確立を目指すことに は，大きな意義がある。

また，酸性雨•酸性雱が森林を（恐らく農作物をも） むしばみつつあることは周知の事実であり，軽視できな い関心の高いテーマである。にもかかわらず，記載か 4頁弱とは少なすぎる。「全地球的問題ではない」とある が，バックグラウンド汚染が生態系に及ぼす影㛃という視点も加える必要があったかもしれない。

人間は $3 \sim 4$ 億年に及ぶ樹木の深違な歴史のなかで自然が蓄積してきた化石エネルギーを，わずか数百年間で使い果たそうとしている。本書はこのことに反省を促 し，光合成のエネルギー源，太陽エネルギーの有効活用 の重要性を再認識させ，その長期的ストックが将来の実用化への鋌を握っていることなど，工学•善学の革新さ れつつある技術の一端を提示している。

過去をふりかえれば，長大な灌溉施設カナート，索焼 の壺を使ったクーゼ潍溉，ペルーアマソンで採用された列状植栽など，伝統的な方策にも時代を先取りした先人 の知恵がひしひしと感じられる。これらを生かした新シ ステムの創造こそ現代人に課せられた使命ではないか。
とくに，アグロフォレストリーのあり方は，地球環境時代を生き抜くための英知の結集であり，循現系を重視し た合理的なシステムの構築が今後ますます推進されてい くにちがいない。

フィトンチットに満ちた森林のなかで，さわやかさを感じ，じっくり緑の大切さ，人類の未来を考える。その ような機会を提供してくれる図書である。広範な読者屑 の自然をいとおしむ心を呼び起こしてくれることだろ う。
（山川修治：農業瓄境技術研究所 地球環境研究チーム）

日本沙漠学会誌「沙漠研究」投稿規定

（1991年3月9日制定）

1．日本沙漠学会硈「沙漠研究」は，沙漠ならびに乾燥•半乾燥地域に関する広範な分野の研究成果を掲載 し，内外の研究交流を図ることを目的とする。
2．投稿の资格 投稿原稿の著者（連名の場合は 1 名以上）は日本沙漠学会の正会員でなければならない。た だし編集委員会が認めた場合はその限りではない。
3．原稿の秨類 原稿の種類と標準となる長さ（図表を含めた刷り上がりページ数）は次のとおりとする。な お標準を上回る長さの原稿の掲㦳が認められた場合，編集委員会の判断により超過ページ分の経貫を著者の負担とすることがある。邦文原稿を原則とするが，原著論文•論説，短報については英文原稿も認める。
（1）原著論文•論説（Original Article）：著者のオリ ジナルな研究の成果で，他の著書，学術雑誌に未発表のもの． 10 ページ内外。
（2）短報（Research Note）：速報的•中間報告的，あ るいは補虺的ではあるが，オリジナルな研究の成果で他誌に未発表なもの． $3 \sim 4$ ページ．
（3）総説•展望：特定の問題について，従来の研究結果•資料に基づき総合的に論じ，あるいは将来 への展望を述べたもの。 10 ページ内外。
（4）资料：研究あるいは実用面で価値が高い事項に ついて関連する資料をまとめたもの． $3 \sim 4$ ペー

ジ．項について客観的に取りまとめ，専門外の会員に も理解できるよう平易に記述したもの。10ペー ジ以内。
（6）抄録•書評：既に出版されている書籍等の内容 を紹介したもの，1ページ以内。
（7）その他：編集委員会が必要と認めたもの。
4．原稿の採否 原稿は編集委員会で蕃査し，採否を決定する．編集委員会は査読結果により原稿の一部変更 を求めることがある。
5．原稿の送付先 オリジナル 1 部，コピー 2 部を日本沙漠学会編集委員会あてに簡易背留で送付する。
6．原稿の返却 受理された原稿は返却しない。ただ し，図•表•写真については希望があれば返却する。
7．校 正 著者校正は初校のみとし，以後の校正は原則として編集委員会が著者の初校に従って行うが，初校ミスは著者の責任とする。著者校正は槑植によるも ののみとし，新たな加除訂正は認めない。
8．別 刷 実畫の範囲で著者に負担を求めることがあ る．負担額は別に定める。
9．著作㮔 すべて日本沙漠学会に属する。

日本沙漠学会㝇「沙漠研究」執筁要領

（1991年3月9日制定）

1．原稿の用紙•様式 邦文原稿はA4サイズの用紙を用い，天地•左右のマージンを十分とって， 1 ページ当り 25 字 $\times 30$ 行（ 750 字）のフォーマットでワード プロセッサーにより菖くことを原則とする。原稿用紙使用の場合は，A4 サイズ横書き 400 字詰めのあのを用いる．英文原稿（英文要旨を含む）はA4 サイス（ま たは国際版）用紙にタイプライターあるいはワードプ ロセッサーを用いて㫷く，英文原稿は，著者の責任で ネイティフ・スピーカーなど，しかるべき人の校閲を予め受けるものとする。編集委員会が校閲を必要と判断し，校閲者を斡旋した場合には，校閱に要する経費 は著者の負担とする。
2．邦文原稿は次の順に整える．英文原稿の場合は邦文

原稿に準じて整えるが，（2）に相当する邦文要旨は編集委員会の了承の上で省略することができる。
（1）表 紙：原稿の種類，題名（抄録•孪評の場合 は書名等），著者氏名（会員資格），所属機関名お よび所在地，連絡先住所•電話番号•FAX 番号 を書く，題名，著者氏名，所属機関名•所在地に は英訳を併記する。英文原稿の場合は，それぞれ に邦文を併記する。
（2）英文要旨：原著論文•論説，総説•展望には 500 語内外，短報•資料には 100 語内外の英文要旨を記㦳し，5語以内の英語のキイワードを添え る．英文要旨から図一覧表までを通してページを付ける。
（3）本 文
（4）引用文献
（5）表
（6）図一葛：図番号，タイトル（必要に応じて凡例，説明文を付ける）をまとめる。
（7）図：図番号と著者名を，鉛筆にて右下に記載す る．

3．图 表 表は別紙に書き，縦罫は用いない。図は14 $\times 19 \mathrm{~cm}$ 以内にそのまま縮小印刷されることを考感 して否き，A4版サイスの用紙上にまとめる。写真も図扱いとし，図とともに一連番号を付ける。図表の挿入位置は本文原稿の右端に明示する。図表中および夕 ィトルで用いる言語は邦文，英文のいずれかとし，一 つの論文中で統一する。

4．本 文

（1）抄録•鲌睐は次例の見出しから書き始め，文の末尾に筆者の氏名を記す。
小川 了：『サヘルに慕らす一西アフリカ・フルベ民族誌』NHKブックス540，日本放送出版協会，1987， 222 р．，B6 版， 750 円。
Rognon，Pierre：Biographie d＇un désert．Plon，Paris， 1989， 347 p．，A5 版， 160 フラン．
（2）他の原稿種類については，本文形式を特に限定 しないが，論旨を明確に簡潔に記载する。
（3）脚注は使用しない。注が必要な場合には本文末尾にまとめる。
（4）単位はSI（The System Internationale）を用 い。略記•略号の使用はスタンダードなものに限 る。
5．引用文献 本文中では市川（1988），小川（1987）， Rognon（1989），または……である（Tucker et al．， 1981，1985；Grove，1986a，b；Lean and Warrilow， 1989；天谷ほか，1984；田中•長，1987）．のように書 く，成怕からページを指定して引用するときは，小堀
（1972：15－17）のように，年号の後にベージ数を記载す
る．本文の後ろに引用文献をまとめる。邦文の文献に ついで欧文の文献を，それぞれ著者名のアルファペッ ト順に並べる。雑誌の場合，巻（号）：ページを記载す るが，通しページの場合は号は省略してもよい。その ほか詳細は以下の例および熼例に従う。
天谷孝夫•長堀金造•三野 徹（1984）：当面する物質移動の課題．「土壤の物理性」49：3－8．
市川正巳（1988）：世界における砂漠化とその研究の現状．「地理学評論」61A：89－103．
小弱 䈠（1972）：「沙漠」日本放送出版協会。
小川 了（1987）：「サヘルに落らす一西アフリカ・フル ペ民族誌」NHKブックス540，日本放送出版協会。
田中 明•長 智男（1987）：土墥の保水性及び透水性と作物根への水分供給力。「九大農学芸誌」41－1／2：63－ 70.

Grove，A．T．（1986a）：The scale factor in relation to the processes involved in＂desertification＂in Europe．In Fantechi，R．and Margaris，N．S．eds．， Desertification in Europe，D．Reidel，Dordrecht，9－14．
Grove，A．T．（1986b）：The state of Africa in the 1980s． Geogr．Jour．，152：193－203．
Lean，J．and Warrilow，D．A．（1989）：Simulation of the regional climatic impact of Amazon deforestation． Nature，342：411－413．
Rognon，P．（1989）：Biographie d＇un désert．Plon，Paris．
Tucker，C．J．，Holben，B．N．，Elgin，J．H．and McMor－ trey，J．E．（1981）：Remote sensing of total dry－ matter accumulation in winter wheat．Remote Sen－ sing of Environment，11：171－189．
Tucker，C．J．，Townshend，J．R．and Goff，＇T．E．（1985）： African land－cover classification using satellie data．Science，227：369－375．
勝俣 誠（明治学院大学）小島紀徳（成䙎大学）小西正捷（立教大学）長島秀柎（理化学研究所）竹田共之（農業環境技術研究所）埸 信行（東京都立大学）書記：黒㬵匡子
日本沙漠学会編集委員会／〒192－03 八王子市南大沢1－1 東京都立大学理学部地理学教室内 TEL 0426 （77）2605／FAX 0426 （77） 2589

Editorial Office The Japanese Association for Arid Land Studies Department of Geography，Tokyo Metropolitan University Minai－Ohsawa 1－1．Hachioji，Tokyo，192－03 Japan．

TEL：0426－77－2605／FAX：0426－77－2589

[^18]
JOURNAL OF ARID LAND STUDIES

Frontispiece
Masatoshi Yoshino: Desertification and Human Activities at Hotan and Qira on the Southern Part of Taklimakan Desert

Review Article

Yoshihiko Hiraga and Satoshi Matsumoto: Perspectives to Survive in the Next Century -Food production and population change in the 21th century-........................ 83-99

Original Articles

Kazuya Takahashi, Jing Zhang, Zi Wei Huang, Jiang Min Xiong, Haruta Murayama, Chun Yu Han, Akimasa Masuda and Hisao Wushiki: Isotopic and Chemical Characteristics of the Water Samples from the Taklimakan Desert
Kazunobu Ikeya: Camel Pastoralism and Conflicts under the Influence of the Development of Commercial Economy: A case study of the Somali in East Africa $\cdots \cdots \cdots \cdots \cdot 113-123$
Masatoshi Yoshino, Yoshihisa Fuilta, Shoichiro Arizono and Mingyuan Du: Agricultural Activities of Uygur Farmers in Hotan and Qira in the Southern Part of the Taklimakan Desert.
-125-135
Special Reports
"Tsukuba Symposium on Arid Land Studies"
Tomoyuki Hakamata: Introduction 137
Shuji Yamakawa: Trends in Research on Deserts and Desertification conducted in Tsukuba- 138-142
Mingyuan Du: Climate and Living of Chinese Deserts 143-147
Masayuki Nemoto: Recent Situation of Desertification in China from the Viewpoint of Vegetation Changes 149-156
"Proceedings of the Third Symposium on Arid Land Technology"
Summary 157
I . Yukuo Abe: "Why Desert in Japan"-Role of Desert Technology 158-162
II. Hiroyuki I: Ground Water Flow of Aquifer 163-168
III. Shigeru Kato: Challenge for Desert Rehabilitation through Sustained Halophytes and Drought Resistant Plants 169-175
IV. Izumi Ushiyama: Wind Energy in the Arid Lands and Wind Turbines 177-181
V. Discussions 182-183
Seminar on World Deserts (2)Shuichi Oка: Climatic Characteristics of the Desert on the Pacific Coast of SouthAmerica: From Some Observations in the Peruvian-Atacama Desert185-191
Book Review 193-194

[^0]: ＊（株）クボタ，プロジェクト推進室かんがい緑化プロシェクトチーム（受付：1993年10月16日，受理：1993年11月22日） ＊＊東京大学堿学部展芸化学科

[^1]: ＊Water \＆Irrigation Project Team，Project Promotion Office，KUBOTA Corporation．3－1－3 Muromachi，Nihonbashi，Cyuuou－ku，Tokyo， 103 Japan．
 ＊＊Department of Agricultural Chemistry，The University of Tokyo．Hongo，Bunkyo－ku，Tokyo， 113 Japan．

[^2]: ＊理化学研究所地球科学研究室
 ＊＊東京大学理学部化学教室
 ＊＊＊中国科学院新疆生物土墥沙漠研究所
 ＊＊＊＊横浜国立大学教育学部化学教室
 ＊＊＊＊＊中国科学探検協会
 ＊＊電気通信大学一般教育化学

[^3]: ＊Laboratory，The Institute of Physical and Chemical Research．Hirosawa 2－1，Wako－shi，Saitama，351－01 Japan．
 ＊＊Department of Chemistry，Faculty of Science，The University of Tokyo．Hongo 7－3－1，Bunkyo－ku，Tokyo． 113 Japan．
 ＊＊＊Xinjiang Institute of Biology，Pedology and Desert Research，Academia Sinica．Urumuqi，China．
 ＊＊＊＊Department of Chemistry，Faculty of Education，Yokohama National University．Hodogaya－ku，Yokohama， Kanagawa， 240 Japan．
 ＊＊＊＊＊China Association for Scientific Expeditions．Beijing，China．
 ＊＊＊＊＊University of Electro－Communications．Chofu， 182 Japan．

[^4]: ＊北海道大学文学部北方文化研究施䲨

[^5]: ＊Institute of North Eurasian Cultures，Faculty of Literature，University of Hokkaido．Sapporo， 060 Japan．

[^6]: ＊国家統計局莀村社会経済統計司編（1989）：「中国分県農村経済統計概要，1980－1987」中国統計出版社．によ る．タクラマカン沙漠の中で自然条件•社会条件が異なる地域との比皎のために＊＊西部の格什市と，＊＊＊北縁の阿克蘇市の例をあげた。

[^7]: ＊F家は展家ではなく，公務員宅。

[^8]: ＊Institute of Geograpy，Aichi university．1－1 Machihata－cho，Toyohashi， 441 Japan．

[^9]: ＊「つくばシンボジウム」迎営委員会事務局長，祳業理境技術研究所
 ＊Secretary General of Tsukuba Symposium on Arid Land Studies，National Institute of Agro－Environmental Sciences

[^10]: ＊展業现境技術研究所 地球珼境研究チーム（日本沙漠学会「つくばシンポジゥム」傕営委員会委員）
 ＊Division of Changing Earth and Agro－Environment，National Institute of Agro－Environmental Sciences

[^11]: ＊譬林水産省熱帯霞業研究センター．現 受知大学客員研究員
 ＊Tropical Agriculture Research Center．Now a Guest Resercher of Aichi University．
 「本稿は1992年12月10日に行なわれた「つくばシンボジゥム」での詳演盗料を苗き改めたものである。

[^12]: ＊瑕業理境技術研究所，環境生物部保全植生研究室
 ＊Vegetation Conservation Laboratory，National Institute of Agro－Environmental Sciences

[^13]: ＊〒113 東京都文京区本駒込 2－28－8 理化学研究所駒込分所 日本沙洪学会内 Tel．03－3947－7708
 ＊c／o The Japanese Association for Arid Land Studies．The Institute of Physical and Chemical Research，2－28－8 Honkoma－ gome，Bunkyo－ku，Tokyo， 113 Japan．

[^14]: ＊清水建設株式会社 技術研究所．〒135 東京都江東区越中島 3－4－17 Tel．03－3643－4311
 ＊Research Institute，Shimizu Corporation．3－4－17 Etchujima，Koto－Ku，Tokyo， 135 Japan．

[^15]: ＊東京鹿業大学総合研究所．〒156 東京都世田谷区桜丘 1－1－1 Tel．03－5477－2534
 ＊NODAI Research Institute，Tokyo University of Agriculture．1－1－1 Sakuragaoka，Setagaya－ku，Tokyo， 156 Japan．

[^16]: ＊足利工業大学機械工学科．〒 326 栃木県足利市大前町 268 Tel．0284－62－0605
 ＊Mechanical Engineering，Ashikaga Institute of Technology． 268 Omae－cyo，Ashikaga－shi，Tochigi， 326 Japan．

[^17]: ＊東京都立大学理学部地理学教室
 ＊Department of Geography，Faculty of Science，Tokyo Metropolitan University

[^18]: 編集発行：日本沙漠学会／〒113 東京都文京区本駒込 2－28－8 理化学研究所騎込分所内
 The Japanese Association for Arid Land Studies TEL 03 （3947）7708／FAX 03 （3947） 8389
 発 壳 所：TOTO 出版／〒105 東京都港区虎／門1－1－28 TEL 03 （3595）9689／FAX 03 （3595） 9450
 定価 1,500 円（本体 1,457 円）
 発行日1993年12月25日

