沙 漠 研 究

IOURNAL OF ARID LAND STUDIES

目 次

特集 タクリマカン沙漠一人間活動と環境変化一

口絵。
1．土屋 清：タクリマカン沙漠のLandsat MSS 疑似カラーモザイク画像
2．高村弘毅：タクリマカン沙漠の環境と人間活動
高村弘毅：特集「タクリマカン沙漠一人間活動と環境変化—」に寄せて…．．．．．．．．．．．87－89
梅村 坦：ユルドゥス草原とタリムのオアシス…．．．91－106
吉野正敏•藤田佳久•有菌正一郎•杜 明遠•雷 加強：タクリマカン沙漠
における沙渶化に及ぼす農業的土地利用の影響…．．．．．．．．．．．．．．．．．．．．107－115
相馬秀廣：タクリマカン沙漠における沙漠化—塩類集積，砂の被覆，風食——…117－129
（2）朱 震達•王 濤：タクリマカン沙漠周辺地域における荒漠化問題（英文）……131－136
9．王 湴：中国新疆タリム盆地における土地利用と土地荒廃（英文）……．．．．．．．．．．137－144

小黑剛成•土屋 清：人工衛星SPOTデータによるタクリマカン沙漠オアシ
スの沙漠化地域の抽出

石山 隆•森山雅雄•竹内延夫•梶原康司•杉原滋彦•刘 培君：衛星データ

によるタクリマカン沙漠南部のホータンオアシス周辺の地表土壌
水分の評亚

杜 明遠•吉野正敏•藤田佳久•有薗正一郎•真木太一•雷 加強：中国夕 クリマカン沙漠における最近の気候変化と農業活動（英文）

何 清•趙 景峰•長島秀樹：タクリマカン沙漠における砂嵐の分布特性 （英文）

185－193
矢吹貞代•岡田昭彦•上田 晃•樊 自立•常 青：中国新疆砂漠域におけ る陸水中の塩類構成イオンの挙動—同位体地球化学の立場から一 $\cdots \cdots \cdot 195-216$
䑚達拜地 米吉堤：タクリマカン沙漠のフローラと植生の概観……．．．．．．．．．．．．．．．．．．．．217－221
1．タクリマカン沙漠の Landsat MSS 疑似カラーモザイク画像
1．False Color Landsat MSS Mosaic Image of the Taklimakan Desert

モザイク画像作成は中国科学院遥感応用研究所，緯度経度線記入は土屋．A 点から北方に延びる線は和田河，西方に延びる線は麻扎塔格山脈，D～B の濃緑線はタリム河，C 点西側を南北に延びる線はケリヤ河，E はコルラ市，F は和田オアシス，F の東方の小五角形のオアシスはチーラオアシス。画像中に見 （土屋 清，Kiyoshi TSUCHIYA）

写真1．タリム盆地西部にある Gez 河上流のKiqik Kara Kol 湖と Kongur峰の氷河。

この氷河が Gez 河の水源になって いる。（1994年9月10日撮影）
Photo 1．The Kiqik Kara Kol Lake on the upper reaches of Gez River in the western part of the Taklimakan Desert．The peak is Kongur，from which Gez River originates．（Sep．10， 1994）

写真2．タリム河中流域における沿岸の胡楊林（Populus diversifolia）。
Qiman 近辺のタリム河沿岸にて。 （1994年9月13日）
Photo 2．Forest of Populus diversifolia in the middle reaches of Tarim River，near Qiman．（Sep．13，1994）

写真 3 ．地下水位低下により立ち枯れした胡楊林（Populus diversifolia）。 Bugur から約 40 km 南のタリム河下流の沿岸にて。（1995年8月26日）
Photo 3．Forest of Populus diversifolia， which has dried up due to the fal－ ling of ground water level in the lower reaches of Tarim River $c a$ ． 40 km south of Bugur．（Aug．26， 1995）

写真4．タクリマカン沙漠南部の Tamarix などの灌木で造られた家屋．Lop 県 Beshtograk 村にて。（1994年8月30日）
Photo 4．A rural house made of Tamarix in the southern part of the Taklimakan Desert，at Beshtograk， Lop．（Aug．30，1994）

写真 5．Keriyaの幹線道路に沿う防風林． （1994年9月4日）
Photo 5．Windbreaks along the main street of Keriya．（Sep．4，1994）

写真6．Rhragmites spp．で造られた防砂草方格（砂防用に草を格子状に並べた あの）．タクリマカン沙漠を横断する Bugur－Niya 間の石油道路（Bugur か ら 70 km の地点）にて。（1995年8月 26日）
Photo 6．The sand protective straw checkerboard of Phragmites spp． along the trunk road from Bugur to Niya $c a$ ． 70 km south of Bugur．（Aug． 26，1995）
（高村弘毅，Hiroki TAKAMURA）

特集：「タクリマカン沙漠一人間活動と環境変化一」 に寄せて

高 村 弘 毅

1．ま え が き

タクリマカン沙漠においては，古くから自然的原因に よる外来河川の水皿の変化や降水皿の変化などにより，人間活助の基盤となる水•土地•草原•森林•生物など の資源環境の条件が変化してきたことは，先学者逹によっ て明らかにされている。 しかし，今世紀に入って，特に後半世紀において，過放牧•乱伐•乱垦など人為的イン パクトに起因する環境の劣悪化（沙漠化はその一つの現象）には著しいものがある。

乾燥地域における环境劣悪化の代名詞のように扱われ る沙漠化は，1960年代後半にアフリカのサヘル地帯でそ の進行が指摘されてから，UNESCO，FAO，WMOなど の国際機関をはじめ各国においても，人間生存を妿かす塄境問題として注目されるようになった。なかでも， 1977年にナイロビで開かれた国連砂漠化会莪（UNCOD） で，沙漠化が地球的規模で起こっている現象であること が確認されて以来，国際社会が協力してその防止活動に取り組むべき地球規模現境問題として位置づけられるよ うになった。わが国も，1980年代に入って，経済先進国 として幄ればせながら国際機関に対応できる国内機関の整備に落手し，研究やその対応の促進などに取り組むよ うになったのである．

このような社会的動向の中で，筆者ら乾燥地域の研究 に関心を寄せる人々が中心となって1983年9月，日本地理学会に乾燥地域研究グループ，同作業グループという名称の研究組織を段階的につくり，一速の研究活動を進 めてきた．その成果は，日本地理学会1986年度秋季学術大会のシンボジゥムIと，その報告「「砂漠化」の地理学」 （地理学評論，60A－2，1987）で集約され，さらに1988年 2 月の「「砂漠化」の地理学特集号」（地理学評論，61A－2） で概ね総括された。これは，日本沙漠学会発足の気连に インパクトを与え，さらに，わが国における沙漠化研究 の活性化に貢献することとなった。その後，乾燥地域を有する国々において資料や情報の提供がある程度経和さ

れたこと，当該国の経済発展に呼応して研究が少し進展 したこと，Landsat（USA）や，SPOT（France），MOS （日本），NOAA（USA）などの人工衛狌のデータが入手し易くなったことなどの影想もあり，アジアはもとよ りアフリカやオーストラリア，南米など世界各地の乾燥地域に関して研究する人が增加した。また，研究手法だ けでなく，研究成果も大いに向上した。しかし，わが国 は，研究対象である乾燥地域をもたない弱さに研究の立 ち遅れが重なったため，世界をリードする成果を末だ見出せずにいるのが現実である。そこで，日本沙漠学会は， わか国と距離的に近いうえ，歴史的にも密接な関係にあ り，さらに科学技術庁の「砂漠化機構の解明に関する研究」をはじめ，大学•研究機関等の日中共同研究プログ ラムの実施を通じてデータの集䖽が急速に進んだ中国の タクリマカン沙漠を取り上げ，沙漠化とその研究ならび に防止対策の現状などについて整理し，視点を見極めて今後の研究指針を特定する必要があるのではないかとい うことになり，1995年度学術大会（1995年5月20日（土）， 21日（日），於：立正大学）の第2日目の午前の一般研究発表に「タクリマカン沙漠特別セッション」を設定し， これに連動させる形式で同日の午後，シンボジゥム「夕 クリマカン沙漠における生活基盤の変化とその対応」 （オーガナイザー，高村弘毅•吉田梦夫•一国雅己）を企画し，実施した。

「タクリマカン沙漠特別セッション」では，䘘星写真 による土摔水分や地況の解析，固定•半固定砂丘の形成 と発達，砂豦の分布，罧境同位体による塩類挙助の分析，気候変化とオアシス農業，生態系の保全の7件の発表が行なわれた。

一方，シンボジゥムでは，オーガナイザー代表の高村弘毅からシンポジゥム開催の趣旨説明がなされたのち，大森博雄（東京大学），門村 浩（東京都立大学）が座長となり，この会議のために（財）福武文化振興財団の国際交流助成（対象研究テーマ：タクラマカン沙漠の環境変化と人間活動一沙漠化防止に向けての国際的共同研究．研究代表者：高村弘毅，共同研究者：梅村 坦•門

村 浩•小坆 厳•吉野正敏•朱 度達•胡達拜地 米吉堤・ムハタール＝チョン）により中華人民共和国から招聥した中国科学院研究員 朱 震達（Zhenda ZHU） の＂The Problem of Desertification in the Marginal Regions of the Taklimakan Desert＂（タクリマカン沙漠における荒漠化問題について），新騮大学教授 胡達段地 米吉堤（Mijit Hudaberdi）の＂The Features of Vegetation and Eco－Geography in Taklimakan Desert＂（タクリマカン沙漠の植生形態と生恕地理学に ついて）をはじめ，日本側から土尿 清（帝京大学）「人工衛星から見たタクリマカン沙漠ーリモートセンシ ングの応用」，相馬秀廣（奈良女子大学）「タリム盆地に おける最近の現境変化と逥跡の立地」，高村弘毅（立正大学）•Muhtar Qong（立正大学大学院院生）「タク リマカン沙漠における水文罧境と共生の崩壊について」，梅村 坦（中央大学）「天山の牧地とタリムのオアシス带耕」，吉野正敏•藤田佳久•有茅正一郎（愛知大学）•杜 明遠（国際農林水産業研究センター）•雷 加強 （新疆生物土轅竗漠研究所）「タクリマカン沙漠のオアシ スにおける人間活動と沙漢化」の7件の発表があった。発表につづき，一国雅巳（埼玉大学）の司会で総合討論 か進められ，外来河川の上中流域における水資源開発と下流域における沙漠化の拡大の関係，草原と原生林の保全の緊急性，オアシスへの人口集秝とその周辺の沙漠化，燃料•食料•飼料の改善の火急性，文化大革命の功践， などについて活発な質疑応答が交わされ，报後に小佣藤（日本沙漠学会会長）が総括してシンボジゥムか締め くくられた。散会に先立ち，門村 浩•学会誌「沙漠研究」編集委員長より，本シンボジゥムの成果と特別セッ ションでの報文を一册の特集号の形にまとめ，本学会会員はもとより広く社会に䢙元してほしいとの要望が出さ れた。
以上の経過を踏まえて，日本沙漠学会の学会誌常設編集委員会とは別に編集委員会（委員長：高村弘毅，委員：梅村 坦•岡田昭彦•門村 浩•長島秀樹）を設置して

特集号の編集にあたることにした。特集号のタイトルは「タクリマカン沙漠—人間活動と環境変化—」と定め， この委員会において，前回のシンボジゥムと特別セッショ ンで発表した方々に投稿を呼びかけ，また不足する分野 は編集委員会の让任で投稿を依頼し，可能な限り内容を充実させることとした。
その結果，シンポジゥムの発表論文から6件，特別セッ ションから 5 件，依頼原稿 1 件，計 12 件の投稿をいただ くことができた。論文の内容は，オアシスや土地利用な どの人間活動と瓄境（とくに沙漠化）の関係を扱ってい るものが 5 件，気候と農業の関係 2 件，陸水関係 1 件，植物関係 1 件，リモートセンシングによる土境水分や環境変化の調査法 3 件である。当初，掲㦳方法は，論哾，論文，展望，短報などの区分，あるいはジャンル別権成 を考ていたが，諸般の事悄でこれにとらわれることく編集した。編集作業に際しては，学会誌の投稿規定，執筆要領に基づくことを原則としたが，著者の意図をできる だけ晜重するため用語の定義や概念規定の統一などは行 なわないことにした。 しかし，特集号の性質もあり，や むを得ず編集委員会の資任で修正させていただいたとこ ろもあり，特に胡逵拝地 米吉堤氏の招待論文は英文で寄稿されたものを和文に抄㢦して収録した。ご理解願い たい。
国際連合の場では，沙漠化防止への国際協力による新 たな対応策を盛り込んだ「砂漠化防止条約」が制定され，本年（1996）中にも発効する機運にある。これを受けて中国であ，タクリマカン沙漠等の乾燥地域における持続的発展計画の一瓄としての総合的な沙漠化防止国家行助計画を立案する必要に迫られているはずである。本特集号が，タクリマカン沙漠はもとより，中国各地，さらに は世界各地の乾燥地域における珼境管理に資することか できれば幸いである。また，こうした実際面への応用を指向した自然科学と社会科学の両分野に跨る基礎的研究 の一層の発展を期待したい。

Taklimakan Desert: Man and Environment-An Introduction

Hiroki Takamura ${ }^{*}$

This special issue carries the papers presented both at the Symposium on "Environmental Change and Human Response in the Taklimakan Desert" and at the Special Session on "The Taklimakan Desert", held on 21 June 1995, at Rissho University. Tokyo, on the occasion of the Annual Meeting of the Japanese Association for Arid Land Studies, and also includes one specially invited paper.

Among the world drylands, the Taklimakan Desert in China is one of the closest drylands to Japan for which many studies have been carried out by various fields of Japanese researchers, ranging from natural to social sciences, since the early times. In addition, during the last decade, Japan-China cooperative study projects on this desert and surrounding areas, including those funded by the Japan Science and Technology Agency and several universities, have increasingly accumulated new findings on the past and recent environmental changes, socio-economic changes, and human adjustments to those changes. Among others, as a result of recent increased human impact on land and water resources, rapid deterioration in the environment, in the form of land degradation/desertification, has seriously affected the marginal regions of the deserts, particularly in and around oasis areas.

This issue is an attempt of an interdisciplinary approach to combat this dryland problem through providing basic materials and ideas necessary for a better understanding of the recent changes in man-environment system particular to the Taklimakan Desert.

Key Words : Taklimakan Desert, Man and environment, Land degradation, Desertification, Interdisciplinary approach

[^0]
ユルドゥズ草原とタリムのオアシス

梅 村 坦•

1．はじめに

タクリマカン沙漠周辺におけるオアシスの歴史と現状 をみるとき，それが中央アジアの遊牧•牧畜世界との相互交渉のもとで営まれてきている事実を無視してはなら ない。 中央アジアでは，天山山脈およびシル河のライン か南北の区切として意味をもち，それより北方の草原遊牧の世界と，南方のオアシス農村都市世界という異なる二つの生業世界から歴史が成り立っている。どちらか一方だけをみていたのでは，歴史も現実も見㰸ることにな る．しかし，実際のところ，歴史叙述の大部分は都市文明の手によって担われてきた。牧畜•遊牧世界には文字 による歴史の叙述という習慣はもともと備わっていない。 したかって，両世界の日常的な相互関連の実際について は，偏った記録が歴史をみる目を集らせたり，䛊認させ たりするのである（梅村，1985，1986，未刊；岡田，1992： 95－100）．現在の新疆の人びとの生活を観察する場合に も，われわれは都市文明や農村社会，それを拠点とした流通経済，もしくは熶近の市場経済の発展などの側面の みに目と関心を恋われ，本来の傡しい自然環境の中に生 きる牧民社会を忘れがちである。

新塪における牧畜•遊牧の世界といえども，流通経済 に無縁であるわけではなく，改革•開放政策の市場経済 の中に組み込まれていることは事実である。こういう時 にこそ，どちらの社会•文化も，乾繰内陸地帯で育まれ てきたあのであり，自然との調和の上で成りたってきた ことをあらためて想起し，中央アジア，とくに新疆ウイ グル自治区に薄らす人びとの社会と文化の基盤について考えつつ，現在の課題を指摘してみたいと思う。

本稿は1987年以来，92年と94年を除く毎年，筆者が新䯠を訪れ，各種の調査に従事してきた際の知見に其づく ものであり，とりわけ1993～1995年度文部省科学研究費•国際学術研究による成果の一部でもある。

2．ユルドゥズ草原における遊牧の現在

新塭ウイグル自治区における遊牧は，ジュンガル盆地 を中心として東のアルタイ山脈すなわちモンゴル国境地

帯と，西のカザフスタン国境地帯，そして天山山脈の北䈔および天山山中，さらにタクリマカン玅漠西縁にあた るパミール高原の東龍を中心とする。

そのいずれの地城においても，現在では多くの場合が冬営地を拠点として半ば定着的な遊牧に変化してきてい る（梅村，未刊），それは中国の定着化政策の反映でもあ る．とはいえアルタイの場合など，年間の移動距離が 400 km をこえる集団も少なくないし，改革•開放政策 は牧民を草原に回帰させる側面も生み出している。
本来，遊牧は，草原と山地きよび河川，また都市や農地の分布状況に応じて，実にさまざまな移動形態をとる。長い遊牧の歴史の上でも，個々の時代䍗境や集団の雜合状況，定着豊耕文明とのかかわり方などにともなって，比皎的限定された地域を安定した牧地とする集団や，民族移動にかかわるような長大な移牧の明け菜れが日常で あるような集団もありえた。

ここで検討するのは，天山山脈のまっただなかにある ユルドゥズ草原である，現在であ周辺の地域と隔絶しが ちな地理環境にあって，農業その他の生産活動をおこな わず，牧民が年間完結したほぼ純粋の遊牧生活をおこなっ ている事例である。この地の遊牧生活については，従来 じゅうぶんな報告がない1。
筆者は1993年9月4日～9月10日。新䲆探検協会と国立民族学博物館の松原正毅氏の手配によって，現中央大学文学部の松田俊道氏とともに現地調査をおこなった。 その際，中国科学院新駱生物土噮沙漠研究所巴音布鮥克草原生態観測試験站站長で，副教授の葉尔道来提＝斯拉別克 Er－dawlet Slabek（カザフ族，以下の本文では夕＇ ウレトと略称する）氏に世話になり，多くの口頭情報や資料をいただいた。特に記して感謝したい。

わずか1週間の帯在時間はまったく不十分であったか，主として古代䖞物の発見•調査とできるだけ広範囲の観察を目的とした。買物の「発見」などについては別に報告したい。

1）地理的自然環境

この草原の名は，現在の行政区画からいえば巴音郭㭷蒙古（バインゴルーモンゴル）自治州の西北部にあたる巴音布魯克（バインブラク Bayin Bulaq）草原である
（たとえば，《巴音郭㭷蒙古自治州概況》編写組，1985）。 ユルドゥズYulduz はむしろ古名であり，漠字では尤魯都斯もしくは珠勒都斯と婁く，トルコ系言晤で「星」の意味である．かつてはトルコ系の人びとがいて，その人 びとの遗したと考えられる歴史过物があり，今も人口の 5\％ではあるがカザフ遊牧民がいる草原であることを意識して，本稿ではこの語を使うことにする。バインブラ クはモンゴル語で「狊かな泉」を意味し，モンゴル帝国期より以後にモンゴル遊牧民か展開したことが現在の行政区画の名称の由来である。天山山中におけるこの大盆地状の草原には文字どおり天空の屋のことく数多くの泉 と河川があり，それらは草原を瀾したあと，まとまって東へ下り，ユルドゥズ河，別名カイドゥ（開都 Heidiq）河となってボスタン湖（古名：バグラシュークル）に注 ぐ．この水系は紀元前からカラシャフル（アグ二＝焉耆） オアシスなどタリム東北端のオアシス国家を形成し，ま たコンチェ（孔雠）河の水源となって古くはロブーノー ルにいたる諸オアシスを篒っていた。現在この自治州の都コルラ（庫尔勒）オアシスも，またタリム盆地北縁の諸オアシスあ，みな天山の恩恵にあずかっている。

さてユルドゥズ草原は，「干旱区研究」 ${ }^{2}$ 6－2（1989增刊）（以下「研究」と略称）：5－6，地図による確認3）お よび現地での調査によれば，次のような位直と地形をも つ．

行政的にみた大まかな位圆は，東経 $82^{\circ} 27^{\prime}$ から $86^{\circ} 17^{\prime}$ ，北絳 $42^{\circ} 18^{\prime}$ から $43^{\circ} 34^{\prime}$ の，東西約 270 km ，南北約 140 kmの地域にあたる。盆地は東部の小ユルドゥスと，そ れと氷河を截く主盽4，919mのイルウェンIrwen（TPCで はErbengと表記）山系を隔てて西南の大ユルドゥスと に分かれ，盆地の平均海抜は $2,400 \sim 2,800 \mathrm{~m}$ ．小ユルドゥ スの方が高い。小ユルドゥスの北は海抜 $5,289 \mathrm{~m}$ の主䀱 をもつイリン・カブルガIlin Qaburgha（TPCのEreh Habirga）山系が迫り， $2,800 \sim 3,100 \mathrm{~m}$ までの山腹や渓谷が牧地にも利用されている。大ユルドゥスの北は主敀 4，253mのナラトNarat山系，南は跟高峰4，635mを擁し氷河をもつカルルク Qarliq 山系である。比較的平らな草原の中央から遠望できる南北の山々は万年雪に鳆われて いる．草原中心部の広さは，小ユルドゥズで東西 50 km ，南北 20 km 余り，大ユルドゥズで東西 80 km ，南北 25 ～ 30 km というところであるが，牧地として利用されてい るのは山腹や渓谷深くまでを含み，それよりずっと広い。従来，日本の歴史分野では，ここ全体をユルドゥズ渓谷 と呼びならわしてきたが，実際に草原に登りきってしま えば，そこはまさしく大平原である。

こうした天山山中の大盆地ユルドゥス草原は，西北の イリ渓谷からの気候の影繁を受けて，降水用が比較的多

いため高山性の草や森林にめぐまれ，さらに風を避け，避寒条件もととのっていて，山地部分は冬季の放牧にと くに適している．盆地低部は寒気が滞留し，冬の放牧に はむかない。後揭の図1でも，冬営地が山腹から渓谷深 くに分布していることを確認できよう。「研究」：7によ れば，この草原の年平均気温は $-4.5^{\circ} \mathrm{C}$ ， 1 月の最低気温は $-46.6^{\circ} \mathrm{C}$ であるが，低部（褾高約 $2,600 \mathrm{~m}$ ）の冬の気温は $-35^{\circ} \mathrm{C}$ であるのにナラト山の南簏（ $3,000 \mathrm{~m}$ ）では $-23^{\circ} \mathrm{C}$ である．また 7 月の昆高気温は $28^{\circ} \mathrm{C}$ に違する。年間の降水盘は全体の平均で 276.2 mm という数字がある が，盆地西端では $260 \sim 300 \mathrm{~mm}$ ，東端で $300 \sim 400 \mathrm{~mm}$ ，南のカルルク山系で $650 \sim 700 \mathrm{~mm}$ ，北のナラト山系で 450 ～ 500 mm と，均一ではない。筆者滞在中の 9 月初め，小雪か舞い，山々の墅線がみる間に下がった。これに対 して年間蒸発異は1，022．9mmから1，247．5mmと激しく，唺かな河川と泉がなければ，とうてい草原は保たれない ことがよくわかる。
利用可能な草地は全体で約 2,620 万畋すなわち 17,500 km^{2} ほどであり，これが固定的に放牧地として使われ ている（「研究」：13，16）．

2）草原内部の集団：人と家畜

想観測騳験站は，大ユルドゥズ草原のほぼ中央におかれ ている．独車公路すなわち天山北の独山子（奎屯市南郊） と天山南の車車（クチャ）とを結ぶ天山縦断道路が，大 ユルドゥズと小ユルドゥズのちょうど接点あたりの隘路 に位蜀する草原唯一の町バインブラク（図1のTマーク） から大ユルドゥズを西南に直行してから正南方向ヘカー ブした地点の西側（図1のCマーク）にあたる。
所長のダウレト氏は1971年から10年間，この草原に住 んだ，その後，現在に至るまでは毎年 4 月から11月のあ いだだけの滞在で钼測•研究を続けている。冬は別の若 い所員がかわる．氏は，1972年から，この草原における牧民集団の牧区わりあての作業に従事した。広大な草原 に低い土眰を築いて放收地の境界線をつくったりもした という，今もその土塁が残る場所がある。それは植生や季節のバランスを考悶したものであって，それまでの伝統的な遊牧集団のテリトリーとは基本的に無関係に計画 されたようである．それが基本となって，現在では家畜 をしたがえる人間の集団は行政区画上で 3 郷 11 村に区分 けされている（「研究」：14）。

しかし，より詳しい事悄は，1982年から1987年までの草原全土の草地と遊牧集団の調査結果をダゥレト氏自身 がとりまとめ，栗紅•張迎華の両氏が清軎した「巴音布魯克草地類型図」（ $1: 100,000$ ）（以下には「類型図」と呼

B：バインタラ集団の営地分布，S：三郷四村の営地分布，G：ゴルウェントルタイ集団の営地分布，
T：パインブラクの町，C：巴音布魯克草原生態敦測試験站

ぶ）から明らかになる．筆者は許可を得て，試験站の一室の壁一面に揭示されていたこの地図を手写した。この地図の主目的は題名どおり，草木の種類を植物学的に調査•分類し分布図として示したものであり，「研究」の諸成果とならんで，長年の苦労の結実である．それにも劣らず，この地図がわれわれの人文学的研究課題の資料 として有用なのは，草地のどこをどの集団がいつの季節 に利用するかが音き込まれていることである。集団こと の季節移動が再現できるのである。主にこの「類型図」 に基づきなからら，以下にユルドゥズ草原の人間集団と家畜集団の実際を俯瞰してみる。

いちいちの集団の季節営地をすべて個別に紹介するの がわかりやすいが，その紙数がないので，29集団の営地 すべてを一括して図示した（図1）．それぞれの集団の各季節営地は互いに錯綜している。

さしあたって二つの例を示す。図中のSマークは大ユ ルドゥズ東部で，三鄉四村という名を与えられている集団の営地，Bマークは大ユルドゥズ西部，巴音塔拉（バ インタラ）という名称をもつ集団の営地である。Sマー クをみればわかるように，この集団はほぼ東経 $84^{\circ} 30^{\prime}$ ，北緯 $42^{\circ} 45^{\prime}$ 付近に春営地を 1 力所もつ。夏は 2 カ所に分散するようにみえる。すなわち一つは春営地から10km ほど東南の夏秋営地で，もう一つは約 50 km 西方の夏秋営地．前者は秋を過ごした後さらに東南 40 km ほどの山 がちの冬営地に入り，後者はすぐ北側の秋冬営地で冬を越すものと考えられる。
次にバインタラの集団（B）は，さらに広範囲の移扐を する集団のようである。春営地が 1 力所，東経 $83^{\circ} 50^{\prime}$ ，北綿 $42^{\circ} 55^{\prime}$ あたりにある．そこから西北西約 40 km の渓谷内の夏営地2力所に移る。その後この集団も二手に分 かれる模様である。一つは春営地のすぐ北側の秋営地に移動してからさらに西北20kmたらずの山政渓谷の冬営地に入る。 もう一つは西部の高地内の渓谷奥深くへ入っ ていき， 3 力所の秋冬営地とさらに西の冬営地に到着す る．春営地と最も遠い冬営地は直線距離で 100 km ほど になるが，家畜の子育てに 1 カ所の春営地のみが使用さ れるのか，どれほどの家畜の種類と数によって構成され る集団か，などについての情報はない。それでも，移助距離の長さや季節ことの展開の仕方などからみてとれるで あろう（Gマークについては後述）。

「研究」：13およびダゥレト氏の話によれば，庫車（ク チャ），倝台（プグル），阿克蘇（アクス）などタリム盆地オアシスの境内から険しいカルルク山系を越え，また イリ渓谷の新源地区からもこの草原に放牧に入ってくる牧民がいる。しかし彼らは固有の草地を確保しているわ けではない。草原外部から来て固有の放牧地をもってい

るものとしては，州の東部の和碩県＂が小ユルドゥズ東端近くに要営地をもち，また生産建設兵団の振二姫がそ の近くに冬営地 ${ }^{5)}$ をもつ。その季節だけにこの草原を利用するのであろう。1993年9月4日，焉筸から和静を経 て巴倫台（バルンタイ）を登り，ユルドゥズ東の入りロ であるチャガンーノール峠にいたる渓谷を続々と反対に降りてくる羊の大群がいくつもあった。秋になって山を くだっているのである。
さらに，やはり小ユルドゥスの東北端には，鳥售木斉 （ウルムチ）市食品牧場が春•㕛•要秋•冬の営地をあっ ていて，これは年間をとおしてウルムチ市用の家畜を度っ ていることになる。ほかに生産建設兵団農六師（本拠は天山北鹙）とユルドゥズ河下流の雹埥回族自治県の所有 する牧地，および自治州所屈の種畜場がある。

以上の，ユルドゥズ外部の組織に所誳する家畜数が， ユルドゥズ草原全体の家畜の約 40% をも占めるという （「研究」：13）．いまやユルドゥズ草原は遊牧経済の点 で，外部と密接に結びついていることが判明する。
残りの家畜約55万頭が，「類型図」に甚づく勘定によ れば，純粋にユルドゥズ草原内部にいる26の集団によっ て姜われている．表 1 はその集団がもつ季節ごとの営地 の数を示したものである。
現地での話によれば，家畜数は公称で約53万頭である か，実祭には羊とヤギで約37万，馬約10万，ヤク6）約 10万，牛約 1 万，そしてラクダ約1千ということである。 この場合，外部の集団が保有する家畜は勘定に入ってい ない。これらの家畜が，約 1 万 1 千の人口とともにこの草原で年間を通して藻らしている。人口の95\％はモンゴ ル遊牧民，残りはカザフ遊牧民で，バインブラクの町に わずかにゥイグル人や回族なども住む。

さて，これら50数万頭の内部家畜集団と約 1 万人の遊牧民は草原の中で完結した季節移動の遊牧生活を送って いて，移助の結果として，かれら自らが天山の下へ降り ることはない。季節ことの営地（放牧地）利用には必ず しも厳密に定まった期間があるわけではなく，それぞれ の占める移助経路や放牧地の場所によって，集団ごとの利用の仕方も異なるか，一般的にいうと表2のように整理される。

ユルドゥ ス草原は原則として各集団ことに四季の営地 をもつ典型的な移助遊牧民の世界であること，そして当然の結果であるが，遊牧は冬営地と亚営地を中心として逃営されていることがよくわかる。

表1をみれば明らかなように，原則としてすべての集団は冬営地と春営地をもっているが，三鄉二村の冬営地，三郷三村の春営地と冬営地，托斯都（タスド）の冬営地 が示されていない。しかし三郷共有と思われる冬営地が

表1．ユルドゥス内部遊牧集団と季節営地数（「類型図」の分析から）。

小ユルドゥス									
西部	一䌟一村	眷1		夏1	奴秋1			冬2	
	古尔温吐勒台	帣1	春秋1		双秋 2		秋冬2	冬1	他 1
	先盛上媛矨	春1		要2				冬1	
	伊克扎克斯台	帣 1		罠1	攻秋1			冬1	
東部	一妦二村	春1		对 1				冬1	
	斏万斯㵀	春 1			发秋 2			冬1	
中部	一郘三村	春 1		新1	取秋1			冬2（？）	
大ユルドゥス									
西部	二艮一村	春 1		砐2	双秋 1	秋1	秋冬2	冬3	
	二鄉二村	春 1		攻1．	秋 1		秋冬1	冬1	
	二紈三村	春 1		要1	取秋1		秋冬2	冬1	
	二稂四村	春 1		双1	取秋1			冬1	
	阿木尔師相	春1		夏2	球秋1	秋1	秋冬1	冬2	
	巴音塔拉	眷1		夏2		秋1	秋冬3	冬2	
	巴音布盤克	春1		罠1	取秋1		秋冬1	冬1	
	科克宥磁	春1		罠1			秋冬1	冬2	
	那拉特	春 1		夏2		秋1		冬1	
	（二•三鄉共有			位1）					
東部	三郷一村	春 1			聝秋1			冬2	
	三鄉二村	春1			奴秋 1			－	
	三紈三村	－			项秋3			－	
	三緛四村	春1			取秋2		秋冬1	冬 1	
	三細五村	春1			取秋1			冬1	
	三竾六村	春1		要2	取秋1		秋冬1		
	三鄉七村	春 1			双秋1			冬2	
	（三揤共有？	春1						冬1）	
	多尔布力金	春 1		嗗 1	取秋1	秋1		冬1	
	包尔額尔温	春1		W1	要如1			冬1	
	托斯都	春1		要2	双秋1			－	

－二郷三村と共有か。
以上の他に，小ユルドゥス東部には本文で述べたように外部からの集団の牧地がある。
 れ1カ所みとめられる。

ある．三郷は七村までの集団があり，托斯都集団の展開 する牧地とそれらはほぼ大ユルドゥズ東南部に集中して いるから，おそらくは托斯都の冬営地も三郷三村の春営地も共用されているのではないかと想像される＂。また，独自の春営地をもたない場合には，冬営地が春営地の役割を果たすことも想定される。

冬営地は，遊牧生活において人にとっても家畜にとっ ても必ず確保しなければならないものであり，高地硬寒 の山岳草地であるユルドゥズでは格別の意味をもつ。

春営地は，年間に占める面積比率が低いにもかかわら ず各集団が確保しているのは，家畜出産のために違いな い．ただしこの草原の遊牧誌は現在のところ明らかでは ない ${ }^{8)}$ 。

夏は，遊牧にとっての季節のハイライトであり＂，す べての集団が夏営地または夏秋営地を十分に確保してい

る．要営地のかわりに夏秋営地をあつ例としては，先の三郷四村などがあるが，そのほかにあ小ユルドゥスでは たとえば古尔温昍勤台（朶）（ゴルウェントルタイ）集団がある。この集団の避牧範囲は小ユルドゥズの集団の中では撮も広く，冬営地はイリン－カフルカガ山地の渓谷奥深くにあり，また要秋営地を小ユルドゥズの中央部と西端に合計 2 力所もっている。この集団の全営地は，図 1にGマークで表示した。「研究」では同じく伊克扎克斯台（イフーシャガスタイ）集団が夏営地をもたないも う一つの集団であるが，「類型図」によれば最低一つの夏営地をもつ。これは唯一大小ユルドゥズにまたがって牧地を保有する集団である。大ユルドゥスでは，三郷一村～五村，七村が夏秋営地となっている。

以上を要するに，この草原では定着的要索が少なく，冬と业を主たる営地とする移動牧畜でも春と秋の営地が

表 2．季節ことの草地利用面积•占有比率と羊収容頭数。（「研究」13－15より作成）

軵的営地	利用月	km ${ }^{2}$	年間占有比率	羊収容喕数•
冬営地	11～3月	425	24．33\％	106万
春営地	4，5，（6月）	235	13．47\％	90万
灭営地	$6 \sim 8$ 月	422	24．17\％	174万
［近秋営地	$6 \sim 10$ 月	356	20．39\％	100万
秋営地	9，10月	147	8．41\％	68 万
秋冬営地	9～3月	161	9．23\％	23 万

－草地が収容しうる家落を羊の頭数に換算した概数。

これほど明確だということは，その移動性がまさに遊牧 というに値する内容のものであることを物語っている。
なお，集団ことに，飼育している家畜の棲成が異なっ ていても不思議はない。またその数も勿論均一ではない。 そうしたことも，営地の設定に反映されているに相違な いか，長期にわたる現地遊牧誌の調査か期待されるとこ ろである

3）牧地が抱える間湎点

豊かな遊牧草原であるユルドゥスは，冬季にはほぼ完全に外界との接触が絶たれる。草原低地の棌斵は $20 \sim 30$ cmであるが，各垰道は $3 \sim 4 \mathrm{~m}$ に達し，舗装された独庫公路も閉鎖される。そうなれば，ブルドーザー先贸の草原東部バルンタイ越え——それは行政区画上確保される ルートなのであろう——か，かろうじて可能であるほか は，乗馬による雪中難行しか交通手段はなくなる。こう して，いってみれば年間完結型の，すなわち人と家畜の集団がこの盆地から外に出ることのない遊牧世界が保全 されているのである。

しかし，襄耕地や都市文明とまったく無縁の遊牧社会 というものは，歴史的にみても数少なかったとみるべき であり，このユルドゥズ草原も例外ではなかった。

そしてそれらの影慜は，自然の草原にも及んでくる。 とりわけ都市文化の発達と人口増加による畜産物需要の増加は，草原に過放牧をおこなわせる。
「研究」は，1981年から1987年にかけて草原調査研究 を実施して科学的に草原を分析し，その合理的な利用と改良計画を提言•実施しようとするものであった．それ は，草地の退行現象が目立って進行し，約 1,289 万畋＝ $1,933 \mathrm{~km}^{2}$（利用可能の草原の 49.2% ）がその影吘を受け ていたからである。

1977年ころ，羊か好む狐茅（Festuca sulcata）や針茅（Stipa capillata）の草地の㯰地率は 52.8% ， 0.66 アー ルあたり55kgの青草を刈り取ることができたが，10年経ってみるとそれぞれの数値は $30 \sim 35 \%$ ， 34 kg に低下 した。また，積雪は少ないが，風の強い盆地周辺部に多 い苪草（Cobresia filifolia）は，1963年当時75～90\％，
241.5 kg だったのが，1987年には80～85\％，131．1kgに落 ちたという（「研究」：3），わかりやすくいえば，草原 において，草の丈•密度ともに加つては高く，「馬も見 えない」くらいだったのが次第に「羊がかくれる」程度 になり，今では「タルバガン（草原の大型ネズミの一種） でもよく見みえる」ということになったのである．現在， ユルドゥズ盆地中央低部の草地の一部は，みるからに疲 せて，薄いところが目立つ。草の根の屏が莩いため，車 が奔放に往来すればたちまち䟽が草原を痛める。そのた め，家畜の季節移動の道筋かほぼ決められているほどに
地帯がある一方，枯れた季節河川の周辺では塩分が吹き出していた。

こうした草地退行化の主要な原因は家畜の增加であり， また気候の輯燥化である。このほかにタルバガンや虫に よる草地への害や，季節草地利用の偏りなどの人為的原因があげられている（「研究」：25）。
「研究」：51－55にはこれらの問題提起とともに各種の方策が提言されている。最終的には，飼料としての草を確保する方法として半人工•人工の草場を大規模に育成 するべきであり，改良草地を 50 万䚿，人工草地 5 万畝，季節調整草地 84.7 万䛌を建設することだという。 すでに数力所の人工草地があり，姍で囲んで家畜を入れずに数年を経ることによって，背の高い草か群生している。
また，草地•地形•気候その他の条件からみて， 1988年における適正な家畜規模は羊 53 万，馬 4.24 万，ヤク （牛） 6.36 万の計 63.6 万頭であるというが，この数は，先 にみた外部集団の家畜を入れて考えればすでに大きく突破されている。
毎年 2% の家畜增として， $8 \sim 9$ 年後には草原の限界 に達するであろうが，増加率と死亡率などを勘案して，家畜の年齢による淘汰，商品化率などが提案され，その ために全家畜の個体ことの測定がおこなわれている。

こうした対策は果たして功を奏するだろうか。最近で は下界のオアシス都市での畜肉䦗要が高まり，1985年以来の市場経済化の浸透によって，トラックでまとめ買い にくる都市の商人に，牧民は比皎的自由に羊などの家畜

を売ることができるようになった。クチャやアクスはも ちろんのこと，タリム盆地南縁のホータンから買い出し商人がやってくる場合ああるという，売れれば家畜を增 やしていこうとするのが今の個人経営である。いきおい過放牧が促進される。それでもオアシスや都市の住民に とってみれば，食肉としての羊の価格は高䐂していると いう印象か根強くある。草原はいよいよ家畜供給をふや そうとする。草地の保謢，生産調整という長期的•集団的目標をもった努力は省みられなくなるのではないだろ うか。
ユルドゥスのような完結した糺䉼遊牧草原にとって，都市経娍の流入により，短期的にみれば，ゲル（テント） の新調，家具什器の充実や買い替え，石油ランブや自家発電装逼の購入など，一举に生活珧境の向上を進め得る が，畜肉需要への無原則な対応は草原そのものの生命に深刻な打転を与えかねないのである。

3．オアシスの規模と都市•農村の人口

ユルドゥズ草原との関係が少なからずみられたタリム盆地周辺のオアシス都市農村の事情を，次に考えてみた い。ユルドゥスの遊牧世界にはウルムチという大都会の影放も入っているのは確かであるか，ここでは特には対象としない。別格の100万都市であり，別の考察が必要 になるからである。

草原に畜肉などの供給向上を要誚するのは，オアシス の都市化の進行であると同時に，その人口の增大だと思 われるので，人口問題を中心にとりあげる。
さて，オアシスは，大小さまざまな規模をもってタリ ム盆地の歴史•文化を彩ってきた。極度の乾燥地帯，沙漠地帯の中に形成されるオアシス，しかも歷史に名を残 してきたオアシスの水は，例外なく山岳からの河川によっ て供給される．タクリマカン沙漠周縁のオアシスは扇状地上，もしくは大河川に沿って形成されるのがふつうで あることは一般の地図をみても一目瞭然である。 いって みればオアシスの規模は河川の大小に決定されている。

しかも，オアシスの維持は人工的な諸策によって保証 されなければならない。治水による季節洪水への対処，㴖溉水路建設整偝による農地の確保や拡大，防風防砂林 による沙漠からの砂侵入と風害の防止などである。これ らに障害がおこれば，小規模河川による小オアシスは㳚亡する，大規模河川による大オアシスでも，歴史的視点 からみれば土着権力機梅は崩壊する。

扇状地や河川流域のオアシスといっても，人間が震地 を形成し，集落を配置する位蛔は自から限定がある。河川のあまりに上流では，季節（触水期）洪水のため農地

はそれほど拡大できない。扇状地のある程度下流域に興地は広く経営されることになる。しかしその廃水は塩度 か高くなって，さらに下流方面への拡大は難しい。もし さらに下流域に別のオアシスがあって，上流のオアシス人口や農地か增大すれば，下流オアシスはたちまち水問題を抱えることになる。ロプーノールの枯渴や，後に触 れるタリム東南縁の諸オアシスの命连などは，気候乾燥 という大原因のほかに，上济域での水の消費という人間活助を要因として考濾すべきであり，これは，いつどこ のオアシスについてもあてはまる事情であろう。
こうして，オアシスは水系とは直角方向に黄地を広め ざるをえない。そうするには上流から人工的に水を引い てこなければならない，そうしたオアシスも，時か経ち，人口からふえ，曼地が拡大していけばオアシス内部の下流域に塩分集䖽がおこりやすくなり，結果的に願域は限定 されてきて，いつかその限界に違することになる。

このように，オアシスの規模は，自然による所与の条件の上に，人工的努力が支えて決定されてきた。この人間の営為を端的に数字で示すのか，オアシスの人口統計 である．特定のオアシスがどれだけの人口を恙えるか， また薌わせる努力がはらわれているか，その指標として人口数を険討してみよう。

1）紀元前の人口統勆

表3は，左から，タクリマカン沙漠東南から時計回り してたどれる主なオアシスの人口数を，古代の例ひとつ と，吱近の8年について表示したものである。地名は統計数値を利用する関係で，現在の行政区画名を用いた。

各オアシスことの左端の黒い棒グラフは，紀元前60年，漢による西域諸国人口数（「漠書」西域伝より）${ }^{10)}$ である。 これらの数字は，あくまでも参考としてみるべきものに とどまるが，これによって，当時の各オアシスのもつ人口許容而のおおまかな対比が可能であろう。
オアシス経営も，現代からみればおそらく自然まかせ に近い時代に，クチャ（古名：黾茲国）は10万を超える人口を辡うことができた（102，393人）。同じタリム盆地北緑の焉趞（駡替国，アグニ，カラシャフル）は前述し たようにユルドゥス（カイドゥ）河の賜で，ここにあげ た中で第二の人口をもつ（ 38,100 人）。人口の第三，ア クス（姑隐国，29，000人）も，クチャ，アグ二同様，天山の水系によるオアシスである。温宿（温宿国，9，900人）はアクスのわずかに上流で，オアシス構造としては一体と考えるべきであろう。

これに対してタリム盆地の西および西南のオアシスで あるホータン（于間国，21，700人），ヤルカンド（莎車国， 19,422 人），カシュガル（疏勒国， 20,647 人）は，当

表 3．タリム盆地のオアシス人口．（「漢侸」西域伝•「新薥年鑑」より作成）

＊：生産建讳兵団を頒域内にもつオアシス

時の規模は比較的小さいが粒がそろっている。
タリム盆地東南では現在でも水系そのものが小さく，当時もチェルチェン（且末国）ではわずか 1,930 人であ る．チャルクリク（婼羌）についてはオアシス比定が難 しいが，いわゆる楼聞の部善国の一部と考えると，広い領域をもっていた当時の人口は17，012であった．それは表3には示していない。現在の二ヤ（民豊）には戎盛国 （ $1,901 人$ ）を，現在のケリヤ（于田）には渠勒国（ 2,470人）を，それぞれ仮に比定したものであるが，当時この一帯で最大のオアシスであった扞弥国（23，580人）と第二の精絶国（ 3,860 人）は，今やタクリマカン沙漠の中 の爵跡でしかない。その減亡の原因は，ここが砂丘移動 の集中する地域だからであろうし＂＇，また水脈が細いた めでもあろう．

これら紀元前のオアシス人口と現在のオアシス人口と を直接に比較するのは難しい。領域や統計のとりかたが異なっているだろうからである。しかし，まず第一に，紀元前のオアシスをほぼ現在のオアシスに比定しうるの は，オアシス生成場所が限定されているからにほかなら

ない。第二に，タクラマカン東南辺の諸オアシスの人口 が現在でも極端に少ないのは，オアシスには自然の許容且があることのよい例示である。 さらに，古代に比べて現在の人口は格段に增大しており，それは歴史的なオア シス経営の結果である。これだけは確実にいい得ること である．

2）現在のオアシス人口統計

棒グラフのオアシスことの右 8 列は，新䍏年鑑 ${ }^{12)}$ によ る現代の各行政区画の，1985年，そして1987年から1993年までの人口数である。統計の上でオアシスをみる際， ホータンとカシュガルについては，都市（行政区画とし てのホータン市，カシュガル市の中心部。注15参照）の みに限ってはならず，周辺豊村地区を視野にいれるため， それぞれホータン県・カラカシュ（隐玉）県，そして疏附県•疏勒県を表示した。 ただし，そのようにするとと くに県の場合，その行政区画の中に，オアシス都市豊村以外の半沙漠や山岳など広い範囲が含まれてくるか，そ の人口はきわめて少ないので，今は統計上の数字をその

まま用いる．それらのうち，1985年，1993年そして中間 の1989年の実数は 表4－1（後に詳述）に示したとおり である．いずれにしても，個々のオアシス領域を攸密に限定するのは非常に困難であり，以下の数値からの考察 も行政区画を基にしたものにならざるをえない。
最近9年間の人口動態を表3でみると，まず温宿県が 1985年から1987年にかけて一時減少しているのが目立つ が，温宿県の機構の一部がアクス県に編入になったため に前年より4，933人が減って160，415人となったという ${ }^{13}$ 。 したがって1986年は165，348人であった。この数値は 1985年の165，299人と比べてリーズナブルであろう。ほ とんどのオアシスの人口がほぼ順調に増加しているのに対して，グラフで敢も奇異に映るのはアクス市のやはり 1985，1987年であろう。その理由を説明しよう。
（a）新騮生産建設兵団とオアシス
実は，表3上のこの2年間のアクス市人口については，新疆生産建設兵団の豊一師の人口のうち，アクス市に屈 する部分を減じたあのを示してある。減じたのは， 1985年で131，478人，1987年で148，602人であり，もしそれを含めれば，アクス市人口も，他のオアシスのグラフと同様，比較的なだらかな增加カーブを呈することになる。 あえてそれを除いて表示した理由は，オアシス辺地の積極的開発維持の程度を，換言すれば本来の伝統的オアシ ス領域の人口を示すためである。アクス市の行政区画内 には生産建設兵団に属する12の団場があり，いずれもア クス河南端からタリム河周辺に分布している（新槛維吾尔自治区統計局，1993：69；新鯂維吾尔自治区測絵局， 1985：44）．それらはすべて幾何学的ブランの人工的灌溉用水路によって形成された農地であることが中国科学院蔄州沙漠研究所（1980）によってみてとれる。すなわ ち，このアクスの例は，少なくとも1988年以降の人口数 が兵団によるきわめて人為的開拓•開聖•開発によって保証されたものであることを，よく示しているのである．原資料により，表3のチャルクリクの1985年の人口も兵団の9，897人を除いた数値であり，同様にチェルチェン も同じく810を，カラカシュも4，823を，焉耆も 32,281 を除いた数値で棒グラフにしてある。実数は表4－1参照。

新疆生産建設兵団は，新中国成立に際して剪入された人民解放軍を母体として，1954年に175，400人の規模を あって成立し，新中国による新瀶開拓の先兵として，文字どおりの機能をもち，新覑各都市•各地区に分散配罩 されて工楽生産にあ大きな役割を果たしてきているもの である．新㸷生産建設兵団史志編筑委員会（1989：481） によれば，その人口の增加率は1963年までは $21 ~ 37 \%$ ， 1965年から1971年の間は最大で 48% を含む 40% 代を続 け，1975年から急速に落ちて $20 \sim 10 \%$ 代であった。そ

して1981年からはマイナス成長もでるようになり，数\％ の伸びに現在はおちついている。それでも最大時で 225万人（1983年），1993年には新檞全人口 $16,052,648$ 人中， 2，197，600人の大勢力である．重要なのは，その 88.2% が漢族によって構成される（「新疆年鑑」1994年版：43，438 ことである。

「新槛年鑑」の1986年版「概況」（30－146），1988年版 の「地州市県建設」（553－664），および新疆維吾尔自治区統計局（1993：68－69）に表記されたところによると，本稿で基本として扱っている16のオアシス行政区画のう ち，その䫀域内に，都市における少人数の事務所（例： カシュガル市）などをのぞき，兵団の団場という独自の開発地区をもつのは，表3，表4－1に＊印を付したチャ ルクリク，チェルチェン，カラカシュ，疏勒，アクス，温宿，コルラ，焉都の8カ所である。但し，新囫維吾尔自治区統計局（1993）にはチェルチェンの表示がない。 なお，1992年末に，ヤルカンドには「農場」と称する 500 人規模のものがあるが，これはあまりに小規模で，地図上でも確認できないため除外する。他はすべて数千人以上の人口をもつ。最低でもカラカシュ47団の4，013人（1992年），最高ではアクス 1 団の 17,207 人（同）で ある．アクスの例にみたように，オアシスの兵団は，甚本的にその中枢領域部には置かれない。河川流域であっ てもあくまでも辺境開拓，新たな带地開壁に必要な，本来のオアシス水系から離れた沙漠部分や別水系の領域な ど，自然琢境としては本来劣悪な地域にある ${ }^{191}$ 。そこを開拓し，脤地化し，ある意味では沙漠の緑化をおこない，新たなオアシスを形成し，また工業など諸産業の発展を目指すことに䖲進してきたのが兵団である。

兵団人口を除外してグラフ表示をした上述の5カ所の人口（1985，1987年アクス・1985年チャルクリク・1985年チェルチェン・1985年カラカシュ・1985年焉皆）を別 として，兵団を拫する残り 3 力所すなわち疏勒•温宿• コルラのオアシス人口については，「新疆年鑑」人口統計資料に，それぞれ行政区画内の人口と記されているこ とからみて，兵団の人口が含まれていると考えなければ ならない。それら兵団の個別人口の年度例は新塭維吾尔自治区統計局（1993）に示されている。

アクス人口の棒グラフの不自然さには，以上のような理由があった。その他の，兵団を領城に含まない8地域 については，ほぼそのままの数字をオアシス中枢部本来 の姿に近いと考えて，そのオアシスの発展とみてよいだ ろう。

いずれにしても，現在のオアシス人口分析には兵団と いう特色ある存在を無視してはならないのである。
（b）オアシスの現状1：人口からみた規模の比較

表4－1．オアシスことのゥイタル族•㴖族•全人口（人）［1985－1993］．（「新酤年造」1986，1990，1994年版より作成）

$\begin{aligned} & \text { オアシスの } \\ & \text { 行政区罟 } \\ & \text { 名 } \end{aligned}$	1985年			1989年			1993年		
	ウイグル	漢	全人口	ウイサル	涣	全人口	ウイタル	漢	全人口
［東南䋾］									
－チャルクリク県	10，130	16，189	26，852	10，616	14，921	26，132	11，331	17，379	29，317
－チェルチェン県	32，194	5，201	37，471	36，139	6，318	42，539	38，219	8，038	46，349
小 計	42，324	21，390	64，323	46，755	21，239	68，671	49，550	25，417	75，666
［南•西縀］									
二ヤ県	23，719	2，072	25，847	25.948	1，794	27，775	27，259	2，276	29，574
ヶリヤ県	153，656	4，299	158，143	169，352	2，905	172，380	183，152	2，787	186，120
ホータン市	94，959	17，297	112，837	104，573	24，856	129，912	117，438	22，308	140，233
ホータン県	185，431	1.057	186，671	201，085	1，000	202，264	222，256	1，044	223，521
－カラカシュ県	292，624	5，256	298，019	321，495	4，787	326，371	342，187	4，710	346，993
ヤルカンド県	$(443,947)$	$(11,927)$	458，718	475，883	15，677	495，893	522，657	19，851	547，424
カシュカル市	145，132	47，374	194，479	166，988	53，482	223，164	176，057	56，997	236，019
疏附退	286，426	1，749	288，901	313，622	2，126	316，526	344，828	3，113	348，706
－硫勒県	203，297	14，689	218，554	213，487	14，346	228，599	233，457	16，506	250，648
小 計	1，829，191	105，720	1，942，169	1，992，433	120，973	2，122，884	2，169，291	129，592	2，306，238
［北䅗］									
－アクス市	148，432	186.769	339，183	165，666	186，646	356，638	188，764	231，095	425，856
－ウシュ県	127，052	12，634	144，835	139，489	11，409	156，792	147，686	11，590	165，043
－温宿県	128，196	32，897	165，299	130，978	31，871	167，445	143，226	37.112	185，225
クチャ県	284，323	34，332	320，285	300，147	29，945	332，124	313，270	30，353	345，771
－コルラ市	74，316	138，611	219，048	84，334	152，905	244，576	88，329	191，830	290，202
－鴀密県（回族）	27，872	60，208	113，673	29，725	44，803	101，977	31，507	48，522	108，743
	$(22,235)$			$(24,006)$			$(25,125)$		
小	790，191	465，451	1，302，323	850，339	457，579	1，359，552	912，782	550，502	1，520，840
合 咕	2，661，706	592，561	3，308，815	2889，527	599，791	3，551，107	3，131，623	705，511	3，905，744
無団オアシス	1，617，593	120，107	1，745，881	1，757，598	131，785	1，900，038	1，906，917	138，729	2，057，368
－有団オアシス	1，044，133	472，454	1，562，934	1，131，929	468，006	1，651，069	1，224，706	566，782	1，848，376
全新亞	6，294，348	5，349，239	13，611，370	6，827，344	5，531，630	14，541，604	7，589，468	6，036，700	16，052，648

－生堐建設兵団を䫀战内にもつオアシス。
本表では，表3に示したオアシスの他に，参考としてウシュ県を加えた。
全人口とはウイタル族•漠族人口に，それ以外の民族人口を合わせた数字である。
ヤルカンド県の1985年人口数（ ）は，\％䋁旪数字からの逆算による。
焉㗉県とは想登回族自治県のこと，ウイダル族の相に示した回族人口は，小計•合旪相には反映されない。
有団，無団とは，生㐬建設兵団の有無を慈味する。

以上のような条件のもとで，簐者の現地見間をまじえ なからあらためて表 3 をみると，オアシスの現状がいく つか浮かび上がる。その際，地図として，中国科学院闌州沙漠研究所（1980）は，視角的に概観を得られるもの として有効である。
（1）都市集中が進んでいない豊村中心のオアシスとし ては，ヤルカンド（莎車）－オアシスの人口保铚力が タリムで最大である。それはヤルカンド河の水䑤に よるものであろう．兵団はない。 1993年総人口： 547，424．
（2）カシュガル（喀什）市•疏附県•疏勒県の人口総体はヤルカンドをはるかに上回る，カシュガル市は

タリム最大の都市である ${ }^{15)}$ ．大都会を中心として周囲の豊かな農村を従える典型的な総合オアシスとし てみると，疏勒にひとつしかない兵団である41団場 （1992年末には5，118人）を差し引いたとしても，こ こは最大のオアシスのひとつと考えてよいだろう． 1993年総人口：835，373．
（3）ホータン（和田）市とホータン県，カラカシュ （国玉）県をあわせると，カシュガル－オアシスに次 ぐ人口をもつオアシスである。都会そのあのはカシュ ガルほどの規模をもたないか，ヤルカンドよりも密集した都市である。ヤルカンド－オアシスや疏勒県 と疏附県を含むカシュガル全体のオアシスほどの緑

表4－2．新还のウイタル族•涘旌•全人口の圽加卒（\％）［1985－1993］．

	A．1985－1989増加率			B．1989－1993増加率			C．1985－1993増加率		
	ウイグル	㴖	全人口	ゥイグル	漢	全人口	ウイグ	漢	全人口
タリム全オアシス	8.6	1.2	7.3	8.4	17.6	10.0	17.7	19.1	18.0
無団オアシス	8.7	9.7	8.8	8.5	5.3	8.3	17.9	15.5	17.8
有団オアシス	8.4	－0．9	5.6	8.2	21.1	12.0	17.3	20.0	18.3
東南縁オアシス	10.5	－0．7	6.8	6.0	19.7	10.2	17.0	18.8	17.6
南•西縁オアシス	8.9	14.4	9.3	8.9	7.1	8.8	18.6	22.6	18.9
北緑オアシス	7.6	－1．7	4.4	7.3	20.3	11.9	15.5	18.3	16.8
全新駇（北亞を含む）	8.5	3.4	6.8	11.2	9.1	10.4	20.6	12.6	17.9

地面秸もないのに人口が多いオアシス，ということ になり，カラカシュ（黒玉）河とユルンカシュ（白玉）河に恵まれた非常に効率のよいオアシスといえ る．両河川に挟まれた農村の人工的区画経営はみこ となものである．兵団はカラカシュに47団場があ る ${ }^{16)}$ ．1993年総人口：710，747．
（4）アクス（阿克蘇）市と温宿は，地勢としては同一 オアシスとみなすべきである。兵団のほとんどはオ アシス南辺外のタリム河流城にある。オアシス人口 は，その兵団人口を除く1985年のアクス市人口＋そ の人口の增加分＋温宿人口ー若干の温宿領域内兵団人口と計算されるとすれば，1993年の総人口試算は 40万近くになるであろう。なお，この複合オアシス全体の兵団人口は1988年で合計 188,625 人という多 さであった（新尴生産建設兵団史志編筑委員会， 1989：74）．なお，新疆維吾尔自治区統計局（1993： 68）によると1992年末では140，896人に減っている。
（5）クチャ（車車）の人口は，紀元前からの人口の伸 び方としては最低である。それは，早くから開発か進んだ結果であろう．1993年総人口：345，771．
（6）コルラ（車尔勒）市は，本来ボスタン湖から出て コンチェ河，タリム河に注ぐべき水系を利用したも のであるか，兵団による大規模な新規灌溉開拓の農場をもつ。近代的な人為活助によって，オアシスは ここまで拡大しうることを明示している。1993年総人口：290，202．
（7）ヶリヤ（于田）は，兵団を持たない南縁のオアシ スでも，自然河川とその治水整椨などによって，現在では20万人近い人口を湌えるということの実例で ある．1993年総人口：186，120．
（c）オアシスの現状 2：ウイグル族と漢族
もう少し詳しくオアシス人口の実態を探るために表 4－1 をみる．ことに歴史的に現地住民であったウイグル族と，この40年間に急成長した兵団を含む漢族との人口比較を試みたい。表3とは異なり，ここでは兵団をもつ

オアシスはすべてその人口を含めた数値である．また，後述（第3項）の参考のためもあって，アクス・温宿に つらなるオアシス地城としてウシュ（鳥什）県も表示し た。これら17のオアシス行政区画の人口䉐成は圧倒的に ウイグル族と漢族であるので，焉耆回族自治県を除いて，両民族のみをとりあげた。

まず，表4－1集計数値からみると，1985年，1989年， 1993年ともに，これらのオアシス全人口に占めるウイグ ル族の比率は，ほとんど変わりがなく80～81\％台となる のだか，兵団をもつオアシスでは約 $66 \sim 68 \%$ ，兵団をも たないオアシスでは92\％台と，大きく数値を異にする。 これは兵団全体の統計に明らかなように，兵団に占める漢族の割合の高さが，オアシス人口にもそのまま反映さ れている結果に連いない。

ここでオアシスの位圆を念頭におくと，兵団の分布と ウイグル族の多臬は相関的に偏りがあることがわかる。 すなわち，兵団をもたない 8 行政区画のうちクチャを除 くと，二ヤ・ケリヤ・ホータン市・ホータン県・ヤルカ ンド・カシュガル市•疏附のすべてがタリム盆地の南お よび西の縁に分布する。この地域で上記 3 年の統計をさ らに細かくみてみると，ホータン市とカシュガル市を除 く5県でいずれの年もウイグル族人口が92\％を超える （1985年二ヤの91．8\％を含むとすれば），つまり，タリム盆地（南新溴）でもとりわけこの地城にウイグル族が集中している．そのことは，全新盡に占めるウイグル族の数値が $46 \sim 47 \%$ であるのと比べれば明らかである。一方，漢族は，ウイグル族が圧倒的多数のこの地域のオアシス社会の中では，ホータン，カシュガルの二つの都市部に集中していることがわかる。

また，タリム南•西縁の地域で兵団をもつのはカラカ シュと疏勒のみであるが，それらもウイグル族が前者で は98\％台，後者でも93\％台という数値を示す。統計上明 らかなカラカシュの1985年の兵団人口は，前にもみたと おり4，823人で，全人口の1．6\％にすぎなかった。1992年 にいたっては4，013人で， 1.2% 弱である。

念のために，総人口の少ないチャルクリクとチェルチェ ンというタリム東南縁のオアシスを除き，タリム南•西縁のオアシスと，タリム北縁のオアシスのウイグル族と漢族の比率を比較しておくと，それぞれ全人口に占める割合は，前者のウイグル族は93．9\％，漢族は5．6\％である のに対して，後者のゥイグル族は 60.0% ，熯族は 36.2% となる。

以上のように，タリム南•西地区のオアシスの農村部 は兵団の有無にかかわらずほとんどウイグル族一色の社会である上に，兵団のないオアシスはこの地城に集中し ている（クチャだけは兵団をもたないかタリム盆地北縁 に位置する），このことは，この地域にこそ伝統的な現地人によるオアシスの姿が残っていることを物語る。

一方，兵団をもつオアシスの分布は，チャルクリク， チェルチェンという少人ロオアシスがタリム東南にある ほかは，ほとんどがタリム北縁にならんでいる。その中 で人口が20万台以上のアクス市，コルラ市という，近代的な都会をもつオアシスでは，1993年で漢族人口の占め る割合はそれぞれ54．3\％と66．1\％という高い数値を示す。同じ北縁のオアシスのうち，全人口数ではアクスとコル ラの中間にあたるクチャには兵団はなく，しかも熯族人口は8．8\％にすぎない。熯族は，兵団と，そして都市に結びついていることが確認できる。

それでは，ゥイグル族，漢族そして全人口の8年間の動態はどうなっているのか，表4－1をあとにして人口增加率を計算したのが表4－2である．1985～1993年にわた る8年間の增加率（C）では，全オアシスでみるとわずか に漢族人口の増加率がウイグル族を上まわっている中で，兵団をもつオアシスの漢族の伸びが，もたないオアシス のそれを淩駡しているのがわかる。この傾向は，1989年以前と以後とで大きく異なる。前半期の增加率（A）に比 べて後半期（B）では，ゥイグル族の增加淬は兵団の有無 にかかわらずほとんど変わらないのに，熯族の增加滔が ことに兵団をもつオアシスで矢出している。このことは，改革•開放政策の進展にともなって内地から熯族が大皿 に新喦へ流入してきていることを示している。オアシス都市部に漢族が增加しているのは事実であるが，兵団も その傾向を支えているのであろう．表4－1の数値を計算 してみれば，とくに北縁のアクス市，コルラ市の漢族人口増加率はウイグル族よりはるかに高いのか目立つ。

もうひとつだけ，兵団の有無に関係なく，タリムの南•西縁オアシスと北縁オアシスの人口増加率を比皎してお く，表4－2の下部である．これをみれば，南•西縁では ウイグル族の増加率は常に北縁より高い数値を示す。同時に，1993年までの8年間では漢族も北より高く，当然，全人口も同じ傾向である。

タリムのオアシス全体の人口增加凼は，全新預の人口增加率と比べて，8年間でみるとほとんど変わるところ がない（前者 18.0% ，後者 17.9% ）にもかかわらず，ゥ イグル族は全新疆を下回り（ 20.6% に対して 17.7% ），漢族は上回っている（12．6\％に対して19．1\％）ことがわか る。

以上を要するに，タリムのオアシスの中では，1）南•西縁の諸オアシスはウイグル族を中心に伝統的オアシス規模を甚盤として人口増加が著しいが，漢族の增加率も高い。2）おしなべて，漢族の增加率はウイグル族のそ れに比べて高い。3）地域を問わず，漢族は都市を中心 に增加する傾向にある，4）漢族か兵団の中に占める割合は，北縁オアシスで高い，ということを指摘できるで あろう．

また，8年間でオアシス全人口は18\％増加しているが， オアシスは有限であり，この增加率の今後は保証の限り ではない。母数の大きなウイグル族人口の增加率には徵減傾向がみえ，少数である熯族の增加率は地城差に変動 がありながらも上昇傾向にある。民族の母数が異なるた め，人口增加の䯇威に民族の別をいうことはできないか，現地ウイグル族のメンタリティの問題からしても軽視で きる傾向ではない。

3）オアシス人口の歴史的鳥瞰

以上のような最近のオアシスの人口增加は，過去100年くらいの時間の流れの中で，どのように位䁶づけられ るだろうか，18世紀まで逪ったウイグル族人口の数値と しては，倜（1977）か利用できる。それは18世紀後半～ 20世紀のデータを各種の指数を使って修正，整理したも のである．いま，本稿があつかっているタリム盆地のオ アシスに限って，その分析の結果のみを表5 として表示 しなおして，オアシス人口の変選をたどってみる。
これによれば，各オアシスのウイグル族人口は，20世紀初頭から1940年代までに大体が飛躍的な增大をとげて いる，1909年と1940•1941年の約32年間の增加率（表5 のD－B／B㯗）は，ホータン61．3\％，ヤルカンド 12.2% ， カシュカル 88.3% ，クチャ＋アクス＋ウシュ（＋温宿） 64．1\％，カラシャフル146．5\％となる．しかし，これにた いして，1940•1941年から約52年後の1993年までの増加率（表5 のE－D／D欄）は，ホータン12．7\％，ヤルカンドー 6．8\％，カシュガル5．1\％，クチャ＋アクス＋ウシュ＋温宿 36.5% ，そしてカラシャフルにいたっては一 70.3% と いう具合に，前半期に比べて軒並み極端に減少している。
1940•1941年のタリム盆地全体における漢族人口はわ ずかに 1% であった ${ }^{17}$ ことからみると，人口をオアシス の規模測定の指標に用いるには，1993年のオアシスの人

表 5．18世紀後半•20世紀前半のウイグル族人口（参考值：1993年（全人口））
（堀，1977；「新致年造」1994年肘より作成）

	A． 1760 頃	B．1909年	C．1928年	D． 1940 － 41 年	E．1993年	D－B／B	E－D／D
ホータン	72.500	375，000	363，000	605，000	$\begin{aligned} & 681,881 \cdot 3 \\ & (710,747) \end{aligned}$	0.613	$\begin{array}{r} 0.127 \\ (0.175) \end{array}$
ヤルカンド	100，000	500，000	487，000	561，000	$\begin{array}{r} 522,657 \\ (547,424) \end{array}$	0.122	$\begin{array}{r} -0.068 \\ (-0.024) \end{array}$
カシュガル	100．000	478，000	449，000	900，000＊	$\begin{aligned} & 946,147 \cdot 4 \\ & (1,030,933) \end{aligned}$	0.883	$\begin{array}{r} 0.051 \\ (0.145) \end{array}$
クチャ	24，000	125，000	175，000		$\begin{array}{r} 313,270 \\ (345,771) \end{array}$		
$\begin{aligned} & \text { アクス } \\ & \text { (+温缩?) } \end{aligned}$	48，000	182，000	262，000	581，000＊2	$\begin{aligned} & 331,990^{\circ 5} \\ & (611,081) \end{aligned}$	0.641	0.365
ウシュ（鳥什）	24，000	47，000	66，000		$\begin{array}{r} 147,686 \\ (165,043) \end{array}$		
焉耆 (カラシ + フル)	－	43，000	71，000	106，000	$\begin{array}{r} 31,507 \\ (108,743) \end{array}$	1.465	$\begin{gathered} -0.703 \\ (0.026) \end{gathered}$

－この「カシュガル」にはヤンギヒサール（英吉沙）の人口が加えられている。1928年のその人口は，94，000人であった．
${ }^{\circ}$ この数字は，クチャ・アクス・ウシュの合旪である。

- ・ホータン市・ホータン県・カラカシュ（思玉）県の総盯数字。（ ）内の全人口数値も同粎．
- カシュカル市•硫附県•疏勒県にヤンギヒサールを加えてある。（ ）内の全人口数値も同様。
- sアクス市と温宿県の総計。（ ）内の全人口数値も同梂。

口にはゥイグル族人口ではなくて，全人口数を用いるべ きかもしれない。その場合，1940•1941年からの人口增加率は，ホータン 17.5% ，ヤルカンド $-2,4 \%$ ，カシュガ ル14．5\％，クチャ＋アクス＋ウシュ93．1\％，カラシャフ ル2．6\％となる．クチャ＋アクス＋ウシュを除いて，や はり前半期の伸び率をはるかに下回る。

20世紀後半に人口增加率が大きく突出しているアクス についてみると，そこにはやはり，漢族の大開進出が影 をおとしているようである．

表3の分析でも触れたように，アクス南辺のタリム河流域を中心として，生産建設兵団農一師の12の団場が形成されている。農一師は1988年段階で約19万の人口をも ち，そのうちの 93.76% にあたる 176,849 人が漢族である （新厒生産建設兵団史志編築委圓会，1989：74）．また， この数字をさしひけば，アクスの近52年のウイグル族人口の增加率は 34.5% ，全人口では 60.6% という数値にお ちつくのである．

カラシャフルについては，1940•1941年から比べると，人口の民族構成が大きく変わったが，オアシスの規模と してはほとんど変わっていないと考えるべきであろう． このようにみてくると，タリム河の水系を開拓したア クス地区の社会的人口増が目立つあのの，20世紀前半期 の人口增加率から比べれば，後半期は急速ににぶってい ることが判明する。ここであ，時代によるオアシス頒城 と，統計にのる人口業握基準の違いを念頭におかなけれ

ばならないが，それにしても人口增加率の相対的低下現象の傾向は間違いなかろう。

これは何を意味するのだろうか，新中国になってから， とりわけ最近における都市の発展ははめざましいものか ある．物資流通などの総合的•歴史的な餈料収集とその分析がまたれるところであるが，オアシスの人口保疂力 も，流通経済の急速な拡大発展によって，かならずしも かつてのように当該オアシス農村の経済力に大きく頼る必要はないことは確かであろう．それが最近のオアシス人口の増加の原因のひとつであるに違いない。また，生産建設兵団の動向も人口統計に反映されている。にもか かわらず，すでに飛躍的な人口增加がみられないのは， すなわち，各オアシスの自然の人口保欴力が，すでに限界を迎えようとしているからではないだろうか。

こうした観点には，なお分析すべき課題があまりにも多い。流通の問題のほかにも，各オアシスの带業生産力•工業生産力•産業別人口比率の歴史的推移をはじめ，多面的な経済分析が必要であろう。しかし，それらの资料 はまだ少ない。ここでは地知面と人口とを中心に，オア シスの姿の概観をとらえてみた次第である。

4．おわりに

タリム盆地のオアシスが，その人口保篒力の限界に近 いとする見方が，仮に大きくは誤っていないとすれば，保湾力の維持，拡大をはかるために物餈流通や工業化に よる都市経済の発展こそ期待されたとしても，オアシス農業生産物としての食粗確保は早晩，重大な課題となる。

こうした人口增大の背景の中で，タリムの諸オアシス にとって重要な，また都市化現象の進展にともなって增大する畜肉の供給源のひとつであるユルドゥズ草原も， また大きな岐路に立たされていることは疑いない。

総合的な見通しを得るにはなお多くの未解明の課題や，統計の不足の面がある。多面的な政策対応もおこなわれ ているであるう．しかし，牧畜地城を考慮にいれてみる ならば，以上の予伴的考察からも，オアシスの緑化拡大， たとえば生産建設兵団による開拓の進展と人口増加とが連動しうること，そのことと，中国全体の経済発展にも関連して進む都市化現象とは，ともに牧畜への需要を高 め，結果的に草原の過放牧，沙漠化促進につなかりかね ないことを指摘できるであろう。

遊牧•牧畜とオアシス畏耕とは，長い歴史の中で共生 を可能にしてきた。この自然に密着して営まれてきた新堛地域の生業ユニットの䅡極的な意味を，この時点で吟味しなおす必要があると考えるものである。

注

1）筆者は，国立民族学博物館における研究会で調㚗概要を口頭報告したほか，日本沛漠学会1994年度第5回学術大会で「敢近の日本人による新留調査：ユルドゥズ草原研究への道程」 として简単に触れ（啡演要旨集第5集，18－19），また日本沙涘学会の沙资誌分科会（仮称）第1回研究会（1994．6．14法政大学）で「中国新挏牧地について」と避し，さらにユルドゥス草原の実状については第31回野尻湖クリルタイ（1994．7．19） でも口頭報告をした。また，注2）参照。
2）中国科学院新退生物土堷沙漠研究所の定期刊行物．本号は

草场退化及其合理利用和改良研究工作報告」：1－5；同「巴音布
「巴音布然克草場理境条件及合理利用探时」：21－26；同「巴音
茅草原群落結棈和地上生物迫季笻助慗」：30－33；同「巴音布鲁克草埸崌化的研究」：33－39；軍尔道来提，麦来「老芒安明化和裁培的研究】：40－46；禁尔道来提「昒茅的研究」：47－50；葉尔羊来提，麦来，阿徳勒「巴音布魯克草埸合理利用和改良区制草案」51－55．以下の引用では「研究」と略称し，そのベージ数を示す。
3）TPC F－7D：Tactical Pilotage Chart，1st edition，Compiled March 1990，Scale 1：500，000．本文にあげる主貄群の海拔高

度は，この地図によるとさらに高い。
4）「研究」：13には和棦県展区として䟕されているが，類型図」によれば和碩県泥合恶牧場となっている。
5）地図に明確な所両表示はないかs，付近にある取秋牧場も， これに屈するものと思われる。
6）これはこの100年間にチベットから哭入されたbのである。 ちなみに，1958年のチベット助乱の緊，多くのチペット人か はるばるとタリム盆地を迂回維断して，このユルドゥス草原 にまで逈れてきた。かれらがチベットに戻ったのはごく吰近 のことであるという。
7）「研究」は15贸団にまとめて眍述してあるため，より群し い「類型図」を检跴するには，この㘬合役立たない。表1参照。
8）年者の調査と同じ1993年の8月上旬には，松原正狡氏の一行から短期間ではあるが明き取り調查に入っているので，その成果公表に期待したい。
9）張（1986）：83－113．
10）极（1971）参照
11）直木ほか（1995：96－101）
12）新出維吾尔自治区地方志綟築委呈会編，1986年の統旪を揭誡しているはずの1987年版は末見．
13）「新㽞年造」1987年版： 628.
14）その位蛋を概钼するには，新㿼維吾尔自治区測桧局 （1985）が便利であろう．
15）カシュカル市の領域は実䑐の都会部のみの $15 \mathrm{~km}^{2}$ であるの に対し，それより人口数値上では大きくみえるコルラ市は 7．449km²で周辺部を広く含む。また，タリム盆地のオアシス市としては政大の人口を擁し，こく近年の人口增加率が高い アクス市の頏域は，据状地全城からタリム河一帯を含む $18,264 \mathrm{~km}^{2}$ である（「新础年嚂」1986年版）
16）実際には，兵団組機のひとつとして和田震埸管理局という ものがあり，1988年末に人口19，329を噟している，その 81% はウイグル人であり，他の開拓兵団とは多少様子の異なるも ののようであるので，オアシスの規模を考える䏅には，別途 あつかう必要なしと考えておきたい（新把生産建即兵団史志細筑委員会，1989：109－110）
17）凪（1977）： 14.

引用文献

張 承志（1986）：「モンコル大草原遊牧詓」朝日遥草。
极一雄（1971）：中央アジア・オアシス都市国家の性格。「岩波鯜坐世界歴史」6：327－358．（再録「シルクロードの歴史か ら」研文出版社，1977：113－150）
䏱 直（1977）：18－20世紀ゥイグル族人口試論．「史林」60－4： 111－128．
其木太一•潘伯架•杜 明違•餃島良次（1995）：中国北西部の新㺸および特にトルファンにおける沙渙気候と砂丘移動。「i少洪研究」 4：91－101．
岡田英弘（1992）：「世界史の誕生」ちくまライブラリー73，筑時四展。
梅村 坦（1985）：遊牧－带耕関連㻅序䬽ーユーラシア地城を中心 としてー，「ユーラシア社会史における遊牧•带耕及び通淣に関する基碟的研究」東洋文审：5－11．
梅村 坦（1986）：中央ユーラシア社会史研究の展望—現地出土文建•匴接諸分野をめぐる覚え県き一。「学術月報」39－9： 36－39．
梅村 坦（未刊）：遊牧民と定居社会一新野の車例を中心に一。「国立民族学博物館研究杞要」
治州概況」新码人民出版社。
年選1989」新随人民出版社．
 1989•1990•1991•1992•1993•1994各年度版，新面人民出版社．

統旪出版社．
新芭椎吾尔自治区测絵局（1985）「新昺椎吾尔自治区交通図冊」咕絵出版社。
中国科学院間州沙洪研究所（1980）：「塔克拉理干沙葓風文地㬜図 The Map of Aeolian Landform in Taklimakan Desert $1: 1,500,000$ 」中国地図出版社．
中国科学院新到生物土壤竗洗研究所（1989）：「干早区研究」：6－2．

Yulduz Grasslands and Oases in the Tarim Basin

Hiroshi Umemura ${ }^{\text {• }}$

The history of Central Asia has been constructed by two types of society, nomadism and agriculture, which have always kept a relationship with each other either in peace or in warfare. Under the authority of P.R. China, the relationship of the two societies in Xinjiang seems to have been controlled well.

When one visits one of the famous nomad areas, Yulduz basin in the Tianshan mountains for instance, one can see traditional and pure nomad society. They keep four seasonal camps there and do not go down from the basin in order to spend the special season. Such a situation will be shown in the map and Tables 1 and 2. But, in reality, the grass of Yulduz is not enough to sustain livestock; in the past ten years the degradation of the grass has intensified. In this period, nomadic people have been permitted to sell their livestock to the merchants coming from towns of oases located around the edge of Tarim basin. It should be noted that the wide Yulduz grassland faces the dangerous situation of over grazing. This tendency is influenced by the increase of population of oases, including towns and cities outside of Yulduz.

Subsequently, when the recent population data of oases of Tarim basin and some historical materials are analyzed, it is confirmed that each oasis has increased its population as seen in Tables 3, 4-1 and 4-2. Moreover, one can see the characteristic tendency between the increasing rate of Uyghur people and Han-Chinese people in these eight years. In the first four years, Uyghur people of Tarim oases had increased 8.6%, while HanChinese increased only 1.2%, but in the next four years the numbers became 8.4% and 17.6%. Of course, most of the population of the Tarim oases is Uyghur, especially in the southern and the western part of the basin. Nevertheless, it may be pointed out that the increase of the Han-Chinese is concentrated in the Corps for Production and Construction of Xinjiang, which were founded 40 years ago basically at the new frontiers of the oases area, and in the cities of oases.

On the other hand, the increasing rate of population of the latter half of the 20th century has greatly diminished in comparison with that of the first half of the century (Table 5). It may indicate that the oases cannot accept and provide for the population much longer.

But, for the time being, the oases still feed the population; on the contrary, the nomadic population of the Yulduz grassland is rigidly limited. The trend of increase of population of oases leads to the need for increased production of meat, and this development of civilification plays the role of increasing the whole of the oases population. So that it should be recognized that the increase of the population of oases not only influence directly the food problem of the oases themselves, but also oppresses the grassland much.

Key Words: Nomad, Oasis, Population, Yulduz, Tarim Basin

[^1](Received September 25, 1995; Accepted January 12, 1996)

タクリマカン沙漠における沙漠化に及ぼす農業的土地利用の影響

吉野正敏＊•藤田佳久＊•有薗正一郎＊•杜 明遠＂•雷 加強…

1．はじめに

世界の沙漠化に関する研究は多い。新しいIPCCのレ ポート（Le Houtrou and Convening Lead－Author， 1995）においても理学•工学•農学•医学などの面から の研究成果が極めて多いことがわかる。また，タクリマ カン沙漠だけについても中国の研究者の成果は非常に多 く，多方面からの成果がすでに刊行されている。

しかしなから，人間活動とのかかわりを扱った論文は少なく，あっても定開的な解析はほとんど行なわれてい ない（周，1983；胡 知育，1984；夏•雷，1988；胡 文康，1990，1992；夏ほか，1991），上述の IPCCレポート でも農業工学の技術的な研究成果が主で，農家経済•土地利用計画•観光開発などについての成果は少ない。そ こで，既存資料を可能な限り収集し，それを整理•解析 する一方，現地において農民から直接の閫き取りを行な い，その結果を整理して，刊行されている統計資料では とらえられない点を補い，人間活動とのかかわりを明ら かにすることを試みた。 すでに，その一部は公刊した （吉野ほか，1995b；杜ほか，1995）。本稿はその基礎に立っ て，タクリマカン沙漠の乾燥度とその中における地域的差異を述べ，オアシスにおけるウィグル族•渶民族•蒙古族の農民の生産活動への影響，沙漠化との結びつきな どについて記述する。最後に今後の問題点をまとめる。

2．研究方法•資料など

朔き取り項目，および被田き取り者，および聞き取り の記録は，1993年の結果（吉野ほか，1993）と，1994年 の結果（吉野ほか，1995a）をそれぞれ仮印刷にしてあ る．閉き取りを行なった豊家は，南縁のオアシスでは和田（ホータン）6軒，策勒（チーラ）4軒，北縁のコル ラとアクス，および西縁のカシュで合計 9 亁であった。策勒では公務員（教員）宅1軒であ行なった。閉き取り は1軒で約2時間をかけた。

使用した統計資料は既刊の国家統計局農村社会経済統計司の編集による「中国分県辳村経済統計概要」の1985年から1991年版である。

3．調査地域の環境

1）乾煤状的

タクリマカン沙漠はタリム盆地（ $\left.8.4 \times 10^{5} \mathrm{~km}{ }^{2}\right) ~$ の中 の約 39% を占める。タクリマカン沙漠の周縁の山地はタ リム盆地の 38% ，山地と沙漠の中間の平原と呼ぶ部分は 23% に過ぎない。

タクリマカン沙漠の気候珧境についてはすでにたくさ んの記述がある．特にその乾燥の程度は，ソーンスウェ ィトの水収支の計算法（THORNTHWAITE，1948）によっ て，年水不足風を求めると 750 mm 以上に達する。その地域は図1の（上）に示す通りで，中国北西部のタクリ マカン沙漠を中心とした範囲に広がっている（Yoshino et al．，1982）．また，ケッペンの気候分類法によるB気候（BW +BS 気候）の出現頻度は，図 1 の（下）に示 す通りで， 100%（すなわち毎年かならずB気候）の地域がやはりタクリマカン沙漠を中心にして分布し，上記 の年水不足㱏が 500 mm 以上の地域とほぼ一致している （Yoshino et al．，1981）また，耿（1986）は乾燥指数 （ $\mathrm{K}=0.16 \Sigma \mathrm{t}_{10} / \mathrm{r}_{10}$ ，ただし， r_{10} は日平均気温 $\geqq 10^{\circ} \mathrm{C}$ の期間の積算気温）の分布を示した。その結果，タクリマカ ン沙漠の内部は64以上，周縁でも $32 \sim 64$ で，極端な乾燥状態を示す。局地的なトルファン盆地を除くと，広大な面稍でこれほどの乾燥を示す地域は中国の中では他にな い。

表1には若羌（Ruoqiang，ルオチャン）における 1954年～1970年の水不足昷の毎月の平均値と，その標準偏差を示す。平均年不足用は823．4mmに達し，タクリ マカン沙漠の中でも非常に乾燥していることがわかる。 さらに重要なことは，月別の標準偏差で，特に畑の耕作準備の季節である3月•4月と，成育の季節である7月 に大きい。このことは農業的水利用において好ましくな

[^2]（受付：1995年10月6日，受理：1996年1月12日）

図 1．（上）ソーンスウェイトの1948年の方法で求めた水不足舟（d）の分布（YOSHINO et al．，1982）．
（下）ヶッペンの気候分類法によるB気候の出現頻度（\％）の分布（YOSHINO et al．，1981）。

い条件である．

2）局地循珧系

次にタクリマカン沙漠の中の気候地域差を述べる。夕 クリマカン沙漠内の地面付近の高度における大気循環系 からみると，冬には盆地に冷気か堆積するので高気圧性 の循現が卓越し，聂には沙漠が䍹的に高温になるので低気圧性の循桭が発達する。その中間の春と秋にはその䍜移的な循桭の型がみられる。 すなわち，盆地の東半と西半でそれぞれ高気圧性と低気圧性の異なる循爽型かみら

れる季節がある（Yoshino，1994）。これが5月と10月 で，この二つの選移月からみて，夏（4 カ月）の方が冬 （6カ月）より短い。

そうして，冬は南縁の西部には西風が入り込むが，東部では高気圧性の循珢による北東の風が卓越する。しか し，北縁では两方の風系ともそれほど強くはない。一方，変には南縁では西部でも東部でも低気圧性の循珢によっ て西よりの風が卓越する。北縁では上空の偏西風とキャ ンセルし，東よりの風は弱い。結果として，いずれの季節も南縁では風か強く，北緣では比較的弱い（吉野，

表 1．若羌・における水不足量•・の年変化，1954－1970年の平均．

月	1	2	3	4	5	6	7	8	9	10	11	12	年
平 均	0.0	0.1	28.2	64.1	114.4	155.3	177.2	154.9	91.6	35.9	1.6	0.0	823.4 mm
標準偏 差	0.0	0.2	34.5	11.1	9.0	8.9	12.0	6.7	7.5	5.1	2.2	0.0	44.2 mm
水不足量の 出 現 頬 度	0	6	88	100	100	100	100	100	100	100	47	0	100 \％

－Ruoqiang（ $39^{\circ} 02^{\prime} \mathrm{N}, 88^{\circ} 10^{\prime} \mathrm{E}, 888.3 \mathrm{~m}$ ）
＂${ }^{\prime}$ THORNTHWAITE（1948）の水収支計算法で求めた（YOSHINO and URUSHIBARA，1982による）

図 2．タクリマカン沙漠におけるオアシスの耕地率と耕地灌溉率の関係． $\square:$ 南縁の河川流域，○：北縁の河川流域，○：西縁の河川流域数字は現在の供水量 $\times 10^{8} \mathrm{~m}^{3}$

1992；Yoshino，1992）．
これらの主要な気流の境界付近，または限界付近では強風が吹き，砂あらしとなることが多い。また，まれに ではあるが地面付近に湿った空気が侵入し（YATAGAI and YASUNARI，1994；安成•谷田貝，1995），上空には高緯度からの寒気が流入して強い上昇気流か起こる。こ ういう気象状態のときには局地的に強い雨が降ることが ある．これにともない洪水が発生し，大きな被害を受け る．死者や家屋の損害も大きい（「新疆滅災40年」編委会，1993；吉野，1995）。

3）耕地灌溉率

タクリマカン沙漠の北縁と南縁における自然条件の第 2の大きな差は，利用できる水量の差に起因する。その実態を量的に明らかにするため，図 2 を画いた。この図 に使用した数値は，中国科学院塔克拉瑪干沙漠綜合考察隊（1993）による刊行物の表 2 の 14 と表 2 の 15 の「流域別の土地面積，耕地面積，灌溉面積，現状供水量」か ら得た。横朝には耕地率［耕地面積（ム，亩）／土地面積 （ km^{2} ）］を，縦軸には耕地灌溉率［灌溉面積（ム）／耕地面積（ム）］をとり，タクリマカン沙漠の11の流域に

ついてプロットし，両者の関係をみたものである。この図から明らかになる事実は次の通りである。
（i）一般的にみて耕地灌溉率は北縁では $90 \sim 100 \%$ だ か，南縁では $75 \sim 85 \%$ で，比較的小さい。この差は，乾燥度の差，天山山脈より昆侖山脈の水が少ないなど自然環境の地域差，および地域の総生産（すなわち設備投資力）の差などのすべてに起因すると考えられる。
（ii）北縁における耕地灌溉率は，耕地率が55以上に なると減少し始め，60で急減し，65以上では90\％以下に なる．この曲線に示される事実は，将来，耕地面積がい くら増加しても灌溉率は大きくなりえないことを意味し ている。
（iii）南縁でも曲線が示す傾向は北縁と同じと考えら れるが，耕地率が 40 以上で耕地灌溉率は激減する。北緑 が60であったのに比較すると 3 分の 2 の閾値で，これは （i）に述べた現状のひとつの具体的な数値である。
（iv）南縁において耕地灌溉率か激減するときの閾値 は約 77 で，これは北縁の約 0.8 倍である．この値は，北縁において耕地率が30以下の場合，耕地灌溉率はほぼ 100% となるが，南縁では，かなりの幅はあるが耕地率 30 以下の耕地灌溉率は約 80% と図から読み取れる。これ

表 2．タクリマカンジ溑オアシスにおける明きとり带民の耕地面程と作物．

		南	级	北	緑	西 緑
		ホータン（和田）	チーラ（策勒）	コルラ（闌勒）	アクス（阿克蓷）	カシュ（咯什）
明きとり家緐数平均家族構成員数平均耕地面枮		6	5	2	4	3
		4．3人	8人	4．5人	6．0人	5．7人
		－	13．24	354	約40ム	8.2 ム
	水秠	1	－	2	2	－
	小麦	－	2	－	3	2
	とうちろこし	2	3	－	－	－
	ワタ	3	4	1	1	1
	果树	4	1	－	4	3
	その他	フドゥ	牧草	野薬	アブラナ，ヒマワリ	コウリャン

は上記の約 0.8 倍という値と一致する。

4．農家経営の実憶

1）耕 作

南縁のオアシスでは統計によってもウィグル族農民が 100% で，今回の明き取りにおいても全部がウィグル族 であった。家族構成は 8 人が最高， 5 人の場合が多い。北縁では兵団として新しく入植した渶族も多いが，ウィ グル族费民からの聞き取りはアクスで4軒，カシュで3軒において行なった。

耕地面積は南縁のホータンとチーラにおける聞き取り農家の平均では8．7ム／農家であったが，北縁のコルラと アクスでは $2.5 厶$ から約 $110 ム$ とばらつきか大きい（ 1 ム＝ 6．67a，すなわち $1 \mathrm{ha}=15 厶$ ）。この 110 ムを除くと，北縁の平均は24．4ム／農家となり，南縁のオアシスに比較 して， 1 軒あたりの耕作面秙は約 3 倍も広い。しかし，西縁のオアシスのカシュでは8．2ム／農家で，南縁とほぼ同じである．なお，兵団の漢族の農民の耕地面榬は35ム である．オアシス別にまとめた耕地面秸と作物の実情は表2に示す通りである。

栽培作物は北縁のオアシスではワタが第1位で水稲， コムギ，果樹，トゥモロコシ，アフララナ，ヒマワリなど が多い。表2の下部にそれらの順位を示した。南縁では水稲，ワタ，コムギ，トゥモロコシ，ブドゥ，果樹など が多く，ワタが第1位ではない。ワタは換金作物として重要な作物だか，12，1，2月に水を必要とする（吉野， 1994）氷河からの水にたよっているこの地域では，冬 は擎溉水が特に不足する季節なので，南緑のオアシスで はワタを広い面稓で裁培することが難しい。南緑では潄溉水が不充分なためと考えられる。それに対して北縁と西緣のオアシスではワタが第1位にくるのか対照的であ る．換金作物としてのワタの意義が農民の経済状㦔に強 く反映している。

作期は，トゥモロコシを5月中旬～6月上旬にコムギ の条間に播く，コムギを刈るときにトゥモロコシは10～ 20 cm に成長しており， 9 月下旬～11月上旬に収櫒する。冬コムギは9月下旬～11月上旬に播く，春コムギは少な いが，2月下旬～3月上旬に播く，いずれも7月に収糀 する。コメは6月に直播し，和田では10月上旬，コルラ では10月中旬から11月に収糀する。和田におけるコメの作期が北縁や西縁に比較して最も短いが，これはやはり南縁における水不足が原因であろう。そのためと思われ るか，コムギの作期が長くなっている。

ワタは4月初めに播き，9月上旬～11月上旬に収䅡す る．種を播く適期が他の作物より短いことは，水利用の面からは做しい条件となる。

トゥモロコシの収且は条件の悪いところで $350 \sim 400$ $\mathrm{kg} / 厶$ ，普通は $500 \mathrm{~kg} / ム$ である。コムギは $400 \sim 500 \mathrm{~kg}$ ／ム，ワタは $200 \sim 250 \mathrm{~kg} / ム$ である．

2）燃 料

燃料利用に関しては，現在，次の 3 型態がある。 すな わち，（i）沙漠からの薪や庭の枝やワラのみを使う，
（ii）一部（冬）は石炭，一部（夏）は薪や庭の枝やワ
沙漠から取ってくる場合はポブラとタマリックスの根を据ってくる。

燃料または建材としてのタマリックスの採取は一般的 にはオアシスから1950年代には数km以内，1960年代 には10～20km，1980年代には30～50kmと言われてい る（嚠•張，1987）。今日，沙漠における薪の伐採は沙漠化につながることを農民もよく知っており，南縁のオ アシスのある小隊では70\％の人は沙漠へ採取にはいかな いと言う（吉野ほか，1995a）。しかし，詳細な採取範囲 や数字は不明である。ロバ車で沙漠へ行く場合，南縁の農民はオアシスから 30 km までの範囲へは日㷌りが可能 である． 1 週間に 1 回，夜半の 2 時に出発して 18 時頃㷌

表 3．タクリマカン沙漠オアシスにおける間きとり贯家の热料と収入。

	南	篂	北	縁	西 緑
	ホータン（和田）	チーラ（策勒）	$コ ル ラ(1040$ 開）	アクス（阿克䅋）	カシュ（咯汁）
㽗きとり家庭数	6	5	2	4	3
平均家族稢成虽数	4．3人	8 人	4．5人	6．0人	5．7人
石炭を使う家臨数	4 （／5）	2	2	4	3
一冬に使う石炭の且	1トン以上	1－2トン	1－2トン	2トン以上	500kg－2トン
石炭を使用する農家の率	約50\％	約10\％	100\％	100\％	100\％
石炭を使用し始めた年	1983年	1985年	1980年代	1970年代，1989年	1978年か1980年
				から100\％	
沙溑へ伐採にいく回数	－	䢐1－2回	年に10回	年に 7 回	0
沙漠へ伐採にいく方法					
：現在	－	沙演へ 30 km 以上，	沙埧へ数＋km以上	部漠二数＋km以上	－
		22－2時出発，14－18	朝食後出発し17時	朝食後出発し17時	
		時婦る	留る	紹る	
：吸も桖端な埸合	沙漠へ 130 km 以上	－	袙资へ数＋km以上，	沙潪へ $100 \mathrm{km以上}$,	月に1回，1回で
	13－15日かけて8－		2－3日かけていく	1 週間以上加けて，	7－10日かけて，数
	10家族でいく			3 家族以上，10－15	家族でいく
				家族でいく	
带村総生産（元）／人	799	841	－	1，058	1，367

る．1980年代後半，片道に数日をかけてオアシスから約 135 km の地点まで行って伐採した例がある。この場合 は，秋と冬 1 回， $8 ~ 10$ 家族が 1 団となって， 1 ロバ車 に $150 \sim 500 \mathrm{~kg}$（平均して 230 kg と推定される）槕んで㷌っ た．和田河西岸における薪の伐採量は最近では2．6万ト ン／年と推定されている。 アクスのウィグル族脤民も， 1988年以前にはタリム河の南側と北側へ，1回に6日間， 1年に6～7回の割で行ったという（吉野ほか，1995a）伐採に行って和田の人に会ったことがあると語った。別 の農民は1989年以前には200kmまで行ったことがある と言う。
南縁の展家で石炭を使わない理由は「値段が高くて購入できない」ことである。値段の地域差はほとんどなく， $130 \sim 150$ 元／トン，枌炭は80元／トンである．家族数にあ よるが，一冬に1～2トン使用する。現在，石炭だけで燃料をまかなっている閣家数は南縁では全体の10\％以下と推定される。しかし，北縁と西緣では夏は枝やワタのワ ラなどを使い，冬には石炭を使う費家数はほぼ100\％に近く，その中で，冬には沙漠へ年に 7 ～10回行って石炭消費を少なくしている農家数は約20\％である。 すなわち，冬に石炭だけで燃料をまかなっている農家数は北縁と西縁では約80\％で，南縁と大きな差がある。

表3は燃料に関する閆き取りの結果で，沙漠化の大き な要因のひとつである燃料伐採に関する実態である。海烈提（1989）によると，新疆の農村におけるエネルギー餈源の消费状態は，生物（すなわち沙漠からの燃料収集 やオアシス内の植林の計画的な循環伐採など）によるも のが 70% ，石炭が 16% ，石油が 12% ，電力が 2% である。

タクリマカン沙漠のオアシスでは，沙漠からの燃料や，量は少ないがオアシス内の植林の計画的伐採に頼る率は， この新掏平均の値より高いと推定されていたが，詳細は不明であった。表3によって，その一端が明らかにされ たと思う。

3）最近の土地利用の変化

タクリマカン沙漠とトルファン・ハミ地区における最近の土地利用の変化を次に調べた。耕地が林地に改まっ た面秥（ C_{1} ），耕地が牧野に改まった面䖽（ C_{2} ），国家施設•建造物基地の占有面積（ C_{3} ），村などの公共建造物 の占有面䖽（ C_{4} ），農民個人の建物の占有面䖽（ C_{s} ）の変化をみると，図3に示すようにタクリマカン沙漠の北西縁のオアシスにおいて， $\mathrm{C}_{1}, ~ \mathrm{C}_{2}$ すなわち耕地が減少 している面筞がきわだって大きい。例えば温宿，庫車 （クチャ）などでは，16，000ム（約1，060ha）も減少した。
次いで西縁のオアシスで C_{1} が大きい。 C_{1} の比重が大き いという傾向は南縁にも共通しているか，絶対値は最も小さい。図は省略するが，データのある1980年代末から 1990年代初めに至る時代では，図3とほぼ同じ状況にあ る．
1985年から1991年にかけた 1 人当たりの股業生産額の変化率，すなわち，［（1991年の値）－（1985年の値）］／ ［1985年の値］を\％で表現した値で求めると，次の通りで ある（Du et al．，1996）．すなわち，和田は144，カシュ は180，コルラは466，アクスは398で，北縁と西縁のオ アシスが南縁のオアシスの2．7～3．2倍にも及ぶ，また， 1人当たりの播種面積は和田は－14，カシュは－2でいず

図 3．タクリマカン沙漠における県•市別にみた減少した耕地面樻とその転換の割合，1991年．

図 4．オアシスの農業的土地利用からみた諸現象の流れと問題点．

れも減少したのに対して，コルラは＋52，アクスは＋91 で增加した。これをみても，南縁と西縁のオアシスの農家経済はわるく，北縁のオアシスの農家経斎は比較的よ いことがわかる。

5．沙莫化と人間活缕

以上に述べてきた㽘き取りの結果や統計資料の整理な どをふまえて，タクリマカン沙漠のオアシスにおける豊業的土地利用からみた問題点をまとめると図4の通りに なる。

オアシスの人口增加は，オアシスにおける都市化・エ業化による耕地面䖽の減少につなかるる。造林面䖽は增加 しても，沙漠化による耕地面程の減少をさらに增幅させ 3．一方，人口增加によって食椣需要か增加し，これは農作物生産昷の增加を必要とする。そして耕地面䄸の拡大を必要とする．さらにこの過程は砂丘の侵入増加や，灌溉水䡒の増加（策勒県総合発展規画委員会，1988）に よろ水不足を招き，オアシスにおける䍗境の発展に対し てマイナスの要因として働く，また豊作物生産周を增加 させるには機棫耕作面程の增加や，化学肥料使用皿の增加の方策をとらねばならない。この二つは汉皿の增加に はなるか，土地の悪化をしばしばひき起こすことに留意 せねばならない。
他方，人口増加によって燃料需要皿の増加が必要とな る．これは当然，沙漠の植生を破壊することに連なる。 そのため，石炭，さらに将来は石油を使わねばなるまい加，これは大気汚染を增加するマイナス傾向になる。
高価な燃料を買うことができるように副業などによる農家収入を增加せねばならない。換金作物であるワタは より多目の水を必要とし，また食粗生産面䖽の減少をも たらす。例えば，タクリマカン沙漠南縁の二ヤ河流域の人口約300のカバクアスカン村でも，1991年から1992年 にかけてワタの作付面積は約2．5倍になった（三井ほか， 1995）．しかし，コムギの栽培面稹は約半分，トゥモロ コシも少なくなった。これらの関連を綌合的に且的に群 しく考慮して，将来の方策を検討しなければならない。 また，オアシスにおける人口集中による気候の変化（杜， 1993a，b；Du and MAKI，1994）も，地球規模の気候の変化 に加えて21世紀の重要な課題である。
筆者らも，高村・ムハタル（1994）が提言の第1番に あげた沙漠植生にたよらない代替エネルギー疼源の悲入碓立がやはり急務と考える．特に，タクリマカン沙漠の南縁のオアシスではさし迫った課題である。石炭を膭入 できる経斎的基盤を農民に与えることが当面は必要であ る．そのためには，じゅうたん維りなどの副業による㖘

家収入の增加を政策として取り入れなければならないで あろう（吉野，1994；吉野ほか，1994）。家族櫣成や農家 の間取り（有薗，1994，1995）からもこれが可能と考え られる。羊も過放牧となればれ沙漠化につなかるので，過放牧にならぬような計画をたてつつ，例えば，じゅうた んの質（デザイン，染料など）の向上，働き手の教育•指䛞，眅売システムの確立などで，まだ収入向上の余地 は充分にあると考えられる。

明 辞

平成 5 年度と 6 年度の科学技術方振興洞整整によろ「础诜化嫩儛の解明に閉する日中共同研究」の一部を受知大学が受䚾し たか，この餅究はその成果の一部である。研究の推進には，日本科学技術庁，中国科学院の関保各位に非芇にお世蛞になった。昩して感門する次第である。また，現地の明き取りに䁖して， われわれの質問に心よく厷じて下さった農民の方々にも䀇礼申 し上げる次第である。

引用文献

有園正一郎（1994）：タクラマカン砂幙南縁オアシスにおける民家の諧形悲。「愛大史学」3：29－51．
有罯正一郎（1995）：タクラマカン砂潢北緑オアシスにおける民家の諸形㤎．「要大史学」4：37－59．
あ 即䮅ほか著，邱 華盛挋（1991）：「沙资の開発と利用」新䧃科技街生出版社，ウルムチ，122p．
三井呾都夫•小寺浩二•細田 浩•田部秀男•坪井塑太郎 （1995）：タクラマカン沙㗛南緑二ヤ河流娀における人間活渞 と环境変化。「沙淇•水•人間」日中合同法政大学タクラマカ ン沙谈調査報告尞」：13－28．
高村弘颯・ムハタル チョン（1994）：新热ウイクル自治区にお ける玅淡化とその防止について，「立正大学大学院紀要」10： 1－22．
 の変化．「日本沙漠学会䃠演要旨集」4：5－6．
杜 明違（1993b）：中国包温•降水迅の変化図表．（自家版）
圾近中国新畀のタクラマカン矿漠におけるオアシスの带菐活

安成哲三•谷田貝重紀代（1995）：ユーランフ内陸婞における水

 タベースの作成と気候システムの解析」」㓡波大学地球科学采， 55p．
 15.

吉野正敏（1994）：タクラマカン沙潧南縁のオアシス和田•策勒

吉里正敏（1995）：タクラマカンジ䒨のオアシスにおける気侯変
文学福数」110：66－88．

明きとり記绿（1983年8月－9月）」要知大学文学部地理学矿究空， 26 p ．

吉野正敏•噑田佳久•有閣正一郎•杜 明違（1994）：タクラマ
菁活功．「沙漠研究」3：125－135．
 （1995a）：「タクラマカンジ涣の北縁と西緑のオアシスにおけ る䀝民からの㥜きとり肜録（1994年7月－8月）」愛知大学文学部地理学研究室， 22 p ．
吉野正敏•䧼田佳久•有園正一郎•杜 明違•面 加強 （1995b）：タクラマカン沛深のオアシスにおける気候変䢟•沙漠化と人阳活動（1）一喪業的土地利用と带家経済一。「受知大学文学䄖䊼」110：90－106．

策勒県総合発展規画委呈会（1988）：「新盕維吾尔自治区策勒県国民経洘•社会総合発展規画 1986－2000」346p．
耿 䙾宏（1986）：「中国少区的気候」科学出版社，230p．
海烈提 吐尔进（1989）：新典能咨源及其合理開発利用問还．「干早区资䃇与环境」 3－1：110－119．
胡 知育（1984）：塔里木盆地南緑線洲沙漠化的演変及其整治．「新虚地理」7－3：47－51．
胡 文康（1990）：新理＂絲網之路＂及其环境変選「旱干区研究 7－4：1－8．
胡 文康（1992）：20世紀塔克拉理干沙漠环境及其変選．「早干区研究」 9－4：1－9．
割 名廷•張 臨雲（1987）：新笋柽切屈．植物资獂及其合理利用．艮 名廷編：「柽机屈研究钹定成果文集」中国科学院生物土壊玅资研究所：19－52．
北京．321p．
干区研究增刊号（策勒県流沙治理騳験研究成果専粗）」：40－ 48.

中国科学院塔克拉理干沙浣綜合科学考察隊（1993）：「塔克拉玮干沙涣地区水资䃄睐価与利用」科学出版社，302p．

周 興佳（1983）：和田地区议贷化的現状及其防治．「新昢环境保㖡」1983－3：7－8．

Du，M．and Maki．T．（1994）：Climatic differences between an oasis and its peripheral area in Turpan Basin， Xinjiang，China．JIRCAS J．1：47－55．
Du，M．，Yoshino，M．，Fuita，Y．，Arizono．S．and Lel，J． （1996）：Climate change and agricultural activities in the Taklimakan Dessrt，China，in recent years．J．Arid land Studies，5：173－183．
Le Houerou，h．N．and Convening Lead－Author（1995）： Climate change，drought and desertification．IPCC， Working Group II，Adaptation and Mitigation，Subgr．，II．A． 3：1－53．
Thornthwaite，C．W．（1948）：An approach toward a ra－ tional classification of climate．Geogr．Rev．，38：55－94．
Yatagal，A．and Yasunari，T．（1994）：Trends and decadar－scale fluctuations of surface air temperature and precipitation over China and Mongolia during the recent 40 year period（1951－1990）．J．Met．Soc．Japan，72：937－ 957.

YOSHINO，M．（1992）：Wind and rain in the desert region of Xinjiang，Northwest China．Erdkunde，46：203－216．
Yoshino．M．（1994）：Atmospheric circulation in the arid and semi－arid region in China．Proc．International Symp． on HEIFE，Kyoto Univ．，Nov．8－11，1993：39－50．
Yoshino，M．and URUSHibara，K．（1981）：Regionality of climatic changein East Asia．GeoJournal，5－2：123－132．
Yoshino，M．and Urushibara，K．（1982）：International variation of water deficiency over East Asia．Sci Rep．， Inst．Geosci．，Univ．Tsukuba，Sec．A，3：39－66．

Impact of Agricultural Landuse on Desertification in the Taklimakan Desert

Masatoshi Yoshino ${ }^{*}$, Yoshihisa Fujita${ }^{\circ}$, Shoichiro Arizono ${ }^{*}$, Mingyuan Du ${ }^{\text {• }}$ and Jiaqiang LEI ${ }^{*}$

In order to study on the relationship between the human activities and desertification in the Taklimakan Desert, collection of data on the agricultural landuse in the oases was tried by us, interviewing with the farmers. In 1993, field studies were carried out in the areas of Hotan and Qira in the southwestern part of the Desert and, in 1994, in Korla, Aksu and Kashi in the northern and western parts of the Desert. The question items of interview were: family structure, living history, house planning, area for house and cultivation, number of animals, cultivation/harvesting and production of crops, irrigation, ground and well water, fuels, damages by wind/flood/salinization, income from agriculture and side-works, health and living conditions, trafic/transportation conditions and so on. Main results obtained are:
(1) The farmers' income in the southern part of the Desert is very low, as compared with those in the northern and western parts.
(2) Farmers in the southern part use wood fuel from the desert, because of high price of coal.
(3) In severe cases, farmers go into the desert to collect fire wood more than 130 km far from the oases by donkey-coaches.
(4) In the case, that family members have chances to work for sideworks and get more money by carpet making, for example, they can use coal in winter. Higher-up of economic condition of farmers may result in reducing amount of cutting vegetation in the desert.
(5) In the northern part of the Desert, there found no serious desertification.
(6) Salinization, however, is serious, because they utilize enough water for irrigation.

Key Words: Desertification, Human Impact, Human Dimensions, Taklimakan Desert, Land Use

[^3]
タクリマカン沙漠における沙漠化一塩類集積，砂の被覆，風食一

相 馬 秀 廣•

1．まえがき

沙漠化は，地下水位の相対的な低下などを原因として生じる現代の重要な环境問題の一つである。地下水位の相対的な低下は，降水皿の減少あるいは気温の上昇など自然現境自体の変化に伴う乾燥化，さらには，灌溉用水 などへの河川水の多祭な取水や樹木の過剰な伐採による飛砂の侵入•被墢の增大など人為的な原因によっても生 じ，土地条件の悪化（环境悪化）を引き起こす。タリム盆地にみられる沙漠化には，飛砂で地表面が被叕される沙漠化（以下＂砂の沙漠化＂と呼ぶ）と地表面への塩類 の集槛による沙漠化（以下＂塩の沙漠化＂と呼ぶ）に加 えて，風による侵食の增加などがある（朱•领，1981；河野， 1986 ；松本，1988）

中国北西部に位置し，タクリマカン沙漠が広く分布す るタリム盆地は（図1），現在沙漠化が深刻化している地域の一つである。当盆地では，かつてのシルクロード に関連する集落迪跡の位㽚は，同じ河川沿いにあってそ れぞれにほぼ対応すると考えられる現在のオアシスの位置を比較すると，盆地の北縁側では両者はそれほど離れ ていないの対して，南縁側ではかなり離れているものか多い。二ヤ䢘跡のようにかつて長かった河沿いに 100 km 以上も離れ，現在は砂に埋もれている例も少なくな い（保柳，1976：53－103）。

また，タリム盆地の縁辺部に存在するオアシスでは，現在，北•南両縁地域で必ずしも同質の沙漠化が同様の重みで発生しているわけではない。ピーシャンやホーティェ ンなどの南縁沿いのオアシスでは，飛砂による砂の沙漠化が樑刻であり（朱ほか，1964），これに対して，アク スなどの北縁沿いのオアシスではタリム河本流との合流点付近およびタリム河本流沿いのその上流側で，塩害 （塩の沙漠化）が問題となっている。これに関連して，塩性湿地は，巨視的にみると，北縁沿いのオアシス付近 に広いのに対して南緑のオアシス付近ではあまり明暸で はない（西北師範学院地理系，1984：173－174）これら のことは，誘因としての気候変化，とりわけ乾燥化に伴 う河川流舟の隇少や水位の低下に対する反応が地域の土

地的な自然条件などの違いによって異なり，このため沙漢化の状況や被害の実態が異なる可能性のあることを示 している。
以下，自然環堷の変化や人為的影響などによる地下水位の低下を誘因として，沙漠化の実態が気候条件および土地的な自然条件などの違いによりどのように異なるか について，タリム盆地を例として，歴史時代の遣跡にお ける立地珧境の変化との関わりを含めて，主に自然地理学的な視点から検討する。調査地域としては，トンリッ ク付近，ユーティェンオアシス付近，ケリヤ河下流地域， ホーティェンオアシス付近，楼蕄古城付近などをとりあ げ，現地調査および街星画像の判読などに基づいて検討 する。

2．地 城 概 観

タリム盆地は，周囲をテンシャン，バミール，コンロ ン，アルティンの各山脈（高原）に囲まれた盆地で，砂沙漠が主体の，典型的な山陰沙漠であるタクリマカン沙漠がその大部分を占めている。年降水舶は盆地の周縁付近では 50 mm 前後であるか，盆地東部では 25 mm 程度 （ZHU et al．，1986）と特に乾燥している。盆地へ流入す る河川は，高山地城の雪や水河の融解水によって主に淘镍され，6月以降急增する流孟は10月以降に急減し（中国科学院「中国自然地理」編集委員会，1981），これに伴い地表水の存在する節囲も大幅に縮小する。一方，乾燥した内陸盆地の特性から，聚の終わりである 9 月以降 も強い日射を受けて日中は気温が上昇する。年間の可能蒸発力は年降水用の80倍前後（阿部•駒井，1986）に逵 し，盆地の南東部では100倍を超えるところもある（張 ほか，1987）．このため，氾濫原などの地下水位が高い部分では地表面付近に徐々に塭類が集積しやすく，李節的な変化として，河川流葍の減少とともに塩類が集栍す る範囲も広がる。
本流下流部にタムが建設される以前のタリム河は，取季には盆地南西部のヤルカント河からタリム盆地の西縁 および北縁部を経て海抜 830 m のタイトマ湖へ注き，全体としてはひと続きの河川となり，その流城面秥は約

図1．調 査 地 域
$\mathrm{A}:$ アクス, $\mathrm{D}: ト ン コ ウ, ~ \mathrm{H}:$ ホーティィェン, $\mathrm{Mi}: ミ ー ラ ン, \mathrm{Mn}: ミ ン フ ォ ン, \mathrm{~K}:$ カシュカル, $\mathrm{U}:$ カルムチ, $\mathrm{Y}:$ ユー
ティェン
1.トンリック, 2.ミーラン遺跡, 3. 楼闌吉城 (東にロプノール) , 4. カラコシュン, 5. タイトマ湖, 6. ラワク遺跡, 7. メ
リカワット遺跡, 8. カラドン遺跡, 9 . 二ヤ遺跡
19.8 万 km^{2} で，全長は約 $2,200 \mathrm{~km}$ に達していた（中国科学院『中国自然地理』編集委員会，1981）。しかし，冬季には河川水量が減少するため，主にアクス河からの水 が本流となり，ヤルカント河，カシュガル河，ホーティェ ン河などはアクス河（タリム河）まで届かない。
タリム盆地の周囲では，山岳氷河は西部から北部にか けて発達がよい。このため，タリム河では流量の大きな支流が，主に西側と北側から，順次広い扇状地を形成し て本流に合流している。しかし，本流は激しい蒸発作用 にさらされつつ綏やかな勾配で流下するため，流量が大 きく減少しやすい。タリム河は，流量が大きく減少した本流へ，流量の多い支流が順次合流して最終的に1本の水系が構成される，駅伝型とであいうべき河川である。

タリム盆地では，オアシスは山麓の扇状地，とりわけ涌水が得られる扇端付近を中心に分布し（以下＂山麓才 アシス＂と呼ぶ），さらに流量が大きな河川沿いでは，

図 2．トンリック付近の塩性草原．
山麓オアシスに連続して下流側へも広がっている（以下 ＂河畔オアシス＂と呼ぶ）。

図4．河床に広がる塩類（ミーラン河）。

3．沙漠化の実態

1）トンリック付近
PRZEWALSKY が19世紀後半に報告し，RIChTHOFEN と の間で，いわゆるロプノール論争（HEDIN，1940；保柳， 1943）のあととなったカラコシュン（湖）は，かつての ロプノールの南西方約 30 km ，タリム盆地の南東部に位置する（図1）．カラコシュンの上流（南方）約 20 km付近は，トンリックと呼ばれ，塩性草原および塩殻地が広がる（相馬，1995）．タリム盆地の縁辺部では，塩性草原は地下水位が高い扇端付近によく発達する．1988年 9月下旬から10月上旬にトンリック付近で観察した塩性草原では，アシやタマリックスがまばらに生え，露出し た泥質な地表面には一面に塩類皮殻が形成されて乾裂が はいり，アシの根元には，地面とのわずかなすき間から地下水が蒸発しやすいため，白く塩類が析出していた （図 2 ）。これらの状況は，後述のユーティェンオアシス付近に分布するアシが密生した塩性湿原に比べ，かなり乾いていることを示している。
砂は，凹みなどの風陰部分を除くと，地表面にみられ ない。また，紅柳包（Tamarix cone）は，はるか遠方 の段丘面上には分布するものの，この付近の塩性草原で は形成されていない。このように，トンリック付近の塩

性草原では，風成砂は現在ほとんど堆積していない。
タリム河は，少なくとも19世紀後半から20世紀中頃に加けてはカラコシュンへ流入していたが，1952年にその上流約300kmのチケンリックで大西海子ダムが造られ て以降，夕゙ム下流へ水はほとんど流れていない。また， トンリックの北側を流れるミーラン河（図3）は，タリ ム河を除くとカラコシュンへ注ぐことが可能な唯一の流量が大きい河川であり，トンリック上流約 50 km に位置 するミーランオアシスのすぐ上流では，1988年10月上旬 の観察によればかなりの水量で流れていた。しかし，ト ンリック付近では，ミーラン河の河床にはごく小さな水 たまりを残して塩類が白く全面に析出し，さらに両岸に は固く塩類皮殻が形成されていた（図 4）。また中国発行の地形図では，ミーランオアシスの北西約 40 km には，南流するタリム河と東北東へ流れるチェルチェン河との合流点付近にタイトマ湖が表現されているが（図1）， ここでも1988年10月上旬に水面は確認できなかった。

ミーランオアシスでは，小麦，綿，トウモロコシなど に加えて，ブドウやスモモなどの果樹が栽培され，街で はトマトやキュウリなどの野菜も売られていた。また聞 き取りによれば，1950年頃熯族が第二次大戦後初めて建設兵団として入植した時には，遊牧中心のイスラム教徒 か 500 人ほど生活するだけであったが，その後漢族を中心に農業人口が増え，1988年には全体で 1 万人に達して いた。ミーラン河の水量がミーランオアシスのすぐ上流 でかなり多かったにもかかわらずトンリック付近ではほ とんど観察されなかったのは，同オアシスにおける人口増加•耕地の拡大とそれに伴う河川水の人為的な消費量 の増大によるものであろう。

ミーラン河が形成した扇状地は，タリム盆地のなかで は小規模である。ミーランオアシスは，東方約 10 km に存在する漢代から8世紀にかけて栄えたミーラン古城と同様に，この扇状地の扇央から扇端にかけての碩沙漠 （ゴビタン）末端付近に立地する。オアシス付近では高 さ 1 m 以下の小規模な紶柳包を除くと明膫な砂丘は分布

しないものの，タクリマカン沙漠に面するオアシスの外緑部には，幾重にもボプラが防砂林として植えられてお り，砂の沙漠化への対策かなされていた。 なお，ミーラ ン古城は砂にほとんど澓われていない。

カラコシュンは現在干上がっている。その原因として，既に述べたタリム河に大西海子タムが造られ，下流側に水がこなくなったことが大きい。しかし，タリム河のみ でなく，流皿の多い時にはチェルチェン河も流入するタ ィトマ湖で10月に水が確認できなかったこと，また，ミー ランオアシスの下流側で河川流量が激減していることな どから，カラコシュンに現在水がない理由は大西海子夕 ムの建設だけでは説明できない。チェルチェン河でも， ミーラン河と同様に，タイトマ湖より上流のオアシスで河川水を大㚗に消費したため，流舟が大きく減少したこ とが推察される。
ところで，タリム盆地の南西側背後にそびえるコンロ ン山脈西部では，カシュガル付近へ南から流入するゲス河の垠上流地域で，小水期のものと推定されるモレーン群が現在の氷舌端のすぐ下流側に認められている（小野 ほか，1994）．PRZEWALSKYがカラコシュンを報告した 19世紀後半は小氷期の終わりにあたることから，保柳 （1976）にみられるように，タリム河，チェルチェン河， そしてミーラン河の上流地城でも氷河や雪に珤われた面㮐が拡大し，融解水用は現在よりも多かったことは確実 であろう。 小氷期終了後における融解水量の減少は，カ ラコシュンやタイトマ湖で現在水がみられないことの遣因をなすものと考えられる。
以上の点から，いずれにしても，著者が調査したトン リック付近ではカラコシュンに湖水が存在した頃に比べ て河川流量が減少し，これに加えて，最近ではミーラン オアシスなどにおける河川水の人為的な消費量の增大に より河川水位が一層低下した。その結果，風成砂の供給 が少ない状況の下，扇端付近を中心にその下流では塩類 の集䖽が進み，塩性草原を含めて，塩の沙漠化が発生あ るいは進行してきたことは確実である。

2）LANDSAT MSS 画像からみたユーティェンオア シス付近における塩頻集積と砂丘の移動
（1）塩類集積
ユーティェンオアシスは，タリム盆地南縁のほぼ中央部に位㯰し（図1），コンロン山脈から北流するケリヤ河が山簏部に形成した扇状地の扇端付近に分布する。図 5 は，ケリヤ河の水回が夏よりも大きく減少した時期 （1976年11月20日）に倣影されたLANDSAT MSS 画像 である．図5から，以下の点が判読される。

Aで示した白くみえる部分は，塩類の集䖽していると

ころである．地形的には，扇側から扇端にかけての一部 およびヶリヤ河の現河道沿いがこれに相当し，いずれも細かくみると，地下水位が高いところである。なお，年次は異なるものの，8月下旬および 9 月に現地を調査し た際には，これらの部分で塩類か地表面に明瞭に析出し ている様子は観察できなかった。
ユーティェンオアシスは，Oで示した黒ずんでみえる北（上）に開いた扇型が東西に 2 つ並んだ部分である。図5によれば，平面的にはアシか密生した扇端付近の塩性湿地（図 5 のS）を縁じるように，オアシスはその上流（山）側へ扇央にかけて形成されている。これは，㷻密には山筬のオアシスが扇端の塩性湿地ではなく，それ よりも若干上流側の，相対的に地下水位が低い部分から属央にかけて立地することを示している。

また図5において， 2 つの並んだ扇形部分から南方へ延びる，数列の黒ずんでみえる帯状の細長い部分もオア シスである．さらに，図5では判読しにくいが，扇形の オアシス化した部分は東西に自動車で䅦断した際，氾槛原を除いて少なくとも 3 段の段丘面から城成されている ことが確認された。これらは，扇形部分の地城も含めて， オアシスの範囲が平面的にも立体的にもミーランオアシ スなどと同様に拡大してきたことを示している。

ところで，オアシスは湿地や池濫原など地下水位がほ ぼ地表面に達しているところにはみられない。これは， このようなところでは激しい日射と地下水の蒸発に伴う地表付近への塩類集䖽が顕著であるため，オアシスを形成する場所として不適切なことを示している。扇端付近 における集落立地という視点からみれば，日本のような湿潤地城に比べて，タリム盆地のような乾燥地域では，集落は扇状地の末端よりも若干上流側に形成される傾向 のあることを示している。

以上のことから，図5 はオアシスのすぐ下流側および側縁部分では，河川流皿が大きく減少した時期に塩類集䖽が顕著となることを示している。このようなオアシス内部とこれに隣接した下流側における塩類集積の違いは， オアシス内における河川水の大且消费とその下流での水是の急減を反映したものといえる。
（2）砂丘の移動
ユーティェンオアシスから下流側 100 km 付近までの ケリヤ河下流地域では，基本的には，紅柳包を含めて砂丘が形成されていたのは 3 面よりも高位の段丘面であり，塩類集程は最低位段丘である 1 面および 2 面で生じてい た（遠藤ほか，1992；相馬ほか，1993）一一方，ユーティェ ンオアシスの下流（北）側には広大なタクリマカン沙漠 か広がり，流下するケリヤ河は途中で消失している。

図 6 は，ユーティェンオアシスの下流約 60 km 付近

図 5．ユーティェンオアシス付近の LANDSAT MSS 画像（1976年11月20日撮影）。 A：塩類の集積，O：ユーティェンオアシス，S：塩性湿地，X：粒度分析用試料採取地点

図6．堆䖽物の柆度組成
A ：紅柳包，B： 1 面 $(-30 \mathrm{~cm} \sim-40 \mathrm{~cm}$ ），C： 1 面 $(~-~ 60 \mathrm{~cm} \sim-70 \mathrm{~cm})$ ， D：ユルンカシュ河の河床（场所は図1に示した）
（図5のX）における跖低位段丘（1面）の堆䖽物と，付近に分布する段丘面（3面）を翟う風成砂の粒度組成を， 0.5ϕ 間隔で示したものである。風成砂は， 1 面堆䖽物 から主にシルトサイズを除いた粒子（砂）で構成され， しかあ細砂によく淘汰されている。このことは，秋以降 の河川流舟か減少して干あがった河床や氾濫原から風で運ばれた粒子のうち，シルトサイズ以下のものは遣方へ レスとして䢥ばれ，残った砂サイズのものが砂丘砂の新 たな材料として加わることを示している。

ところで，現在ケリヤ河の右岸側ではバルハン型砂丘群が北東方向から活発に移勄しており，その先端（以下 ＂バルハンフロント＂と呼ぶ）の一部は河道近くにせまっ ている（蛨藤ほか，1992；ENDO et al．，1995）．この傾向 は下流側ほど顕著である。北東方向から移動中の砂丘群 は，主に既存の砂沙漠の砂などが再移動したもので砤成 されている。このバルハンフロントは，ユーティェンオ アシス付近では，現在まだ1面と2面には到達していない。 しかし，ユーティェンオアシスの北東側は現在砂の移動 が活発な地域であり，現状がそのまま継続すれば，この オアシスが深刻な砂の沙漠化にさらされる危険性を示唆 している。
なお，ヶリヤ河下流地域付近のタクリマカン沙漠では，街星画像による緃列砂丘群の平面的バターンの判読に基 づき，砂丘群を形成する風向が最終氷期以降現在までに北西 \rightarrow 北東 \rightarrow 北西 \rightarrow 北東と変化してきたことが指摘され ている（Sohma，1995）。砂丘の堆䖽年代から（Kanema－ Kı et al．，1993；印牧ほか，1994），相対的に寒冷な時期 に北西風が卓越するように変化したこと，すなわち上空 の偏西風が強まった時期に，タリム盆地であ相対的に北西風が強まった可能性が示唆される。

3）かつて河畔にあったラワク遗跡

ホーディェンオアシス付近は，タクリマカン沙漠を移勖する北東および北西方向からの砂丘群が現在ほぼ収束 するところであり（ZHU et al．，1986），オアシス北縁付近（たとえば，イェンリック）では，砂の侵入が活発で砂の沙漠化に悩まされている。西域南道最大とされるラ ワクの仏塔（長沢和俊•NHK取材班，1980）は，ホー ティエンオアシスの中心部から北北東へ約 30 km 付近に あり，現在は砂に埋もれている。

1896年にS．HEDIN によって発見されたラワク遣际群 は，STEIN（1921 ：sht．20，27）によれば，ユルンカシュ河本流とその東側の分流とに挟まれた砂丘地帯に存在す る．しかし，マルチスペクトルのSPOT 画像（図7） では，STEINがラワク䢟际群を示した付近に福数 100 m で蛇行した平面形を呈する，砂丘や植生のみられない平坦な部分が涊められ，かって分流していた旧河道の一つ と判読される（SoHMA，1995）．その後，この地域の1／20万地形図を判飪する機会を得た。同地形図においても， $1,340 \mathrm{~m}$ と $1,360 \mathrm{~m}$ の等莴線の平面形がラワク䢟跡群付近 で山側に箱型に凹んでおり，幅の広い旧河道•氾濫原な いし比高の小さな段丘面の存在が確認される。
以上のことから，ラワク楝跡群は，ユルンカシュ河の流园が現在よりあ多かった時期に，分流した1本の流路湂いに形成された河畔オアシスであったことが明らかで ある．

ところで，康頂からタリム河との合流点までホーティェ ン河の（正式には，ユルンカシュ河と西のカルカシュ河 が合流した後，ホーティェン河になる）の河床緱断面

図 7．ラワク遺跡付近の SPOT 画像（1988年10月12日撮影）。
1．ラワク遺跡付近の旧河床，2．ユルンカシュ河，3．ユルンカシュ河東側の分流 （C）CNES 1988 SPOT \circledR RESTEC
（図3）からみると，ラワク遺跡群は扇端のやや下流側 にあり，地形的には地下水位が高く，塩の沙漠化が発生 しやすいところである．しかし現実には，この遺跡群は SPOT画像では明膫に認められないものの，砂に埋もれ ている．

なお，ホーティェンオアシスの中央部から南（コンロ ン山脈側）へ 10 km ほどの，段丘化したゴビタンにはメ リカワット遺跡が分布する。唐代頃まで利用されたこの遺跡は現在廃虚となっているが，ほとんど砂に覆われて おらず，地表面には土器破片が散在している。砂の沙漠化を受けていない点は，同じようにゴビタンに分布する ミーラン遺跡と同様である。

4）砂の堆積から風による侵食へ一楼蘭古城付近に分布 するヤルダンと風食を受けた紅柳包一

楼蘭古城は，かつてのロプノールの西岸側，コンチェ河の三角州に位置する。コンチェ河の北側に存在するク ルック山地は標高が $2,000 \sim 3,000 \mathrm{~m}$ と低く，盆地との比高が小さい（図 1）。 さらに，水蒸気を運搬する偏西風 に対して天山山脈の山陰にあたるため降水は極めて少な く，氷河も存在しない。このため，クルック山地からコ ンチェ河やロプノールへ注ぐ流れはいずれも流量が極め て少なく，運搬される土砂量も少ない。

一方，ロプノールは熯代には塩湖であった（熯書西域伝）．当時の湖岸から 30 km ほど西へ離れた楼闌古城内 の仏塔の基礎上部には，HEDIN（1940）が指摘したよう に，淡水性のモノアラガイなどの貝類を多量に含む泥層 が存在する．かつて，少なくとも古城付近まで，広大な淡水（あるいはこれに近い）湖が広がっていたことは確実である（保柳，1976）。この広大な湖底に堆積した泥層は北東風の強烈な侵食を受け，現在は一面のヤルダン群地域へと変化している。また，古城から南へ 20 km ほ どの流路跡近くには，段丘面上に風食を受けた紅柳包が分布する（図 8）。この紅柳包は，この付近がかっての砂が供給される環境から風で侵食を受ける環境へ変化し たことを示している（相馬，1995）。

このように，現在の楼闌古城付近では，河川に水流が ないことに加えて北東からの強風にさらされ，しかもこ の強風が，砂丘を形成するのに十分な砂を風上側から供給していない点に特徴がある。すなわち，強風の下で沙漠化が極端に進行した結果，風食（以下＂風食の沙漠化＂ と呼ぶ）が顕在化したことを示している。

図 8．風食を受けた紅柳包（楼蘭古城から南へ約 20 km ）。

4．沙漠化の発生に関与する要因

1）塩の沙漠化

トンリック付近にみられた塩の沙漠化は，河川水の大幅な減少に伴うものである。また，河川の水量が減少し た時期のユーティェンオアシス付近の衛星画像にも，地下水位が高いところで塩類が析出しているのか認められ る．これらのことは，激しい蒸発作用が卓越するタリム盆地では，オアシスが拡大したり河川水の消費量が増し たりすると，それらの下流側地域では常に塩の沙漠化が顕在化する危険性があることを示している。 すなわち夕 リム盆地では，地下水位が高いところでは常に塩の沙漠化の恐れが存在するといえる。

図 3 は，アクス河，ホーティェン河，ミーラン河の扇頂付近からタリム本流との合流点（ミーラン河はチェル チェン河合流後のタリム河）までの河床縦断面である。 アクス河とホーティェン河は，それぞれ北側と南側から タリム盆地へ流入する代表的な支流であり，ミーラン河 はタリム盆地で山麓にオアシスを形成している河川の中 で最も小さい河川の1つである。そしてアクス河とホー ティェン河は，ほぼ同じ地点で本流であるタリム河に合流している。

いずれの河川でもオアシスは傾斜の遷䌥点付近に分布 しているが，アクス河のみ，遷緩点からかなり下流まで オアシスが広がっている。山麓オアシス部分の平均傾斜 は，アクス河から順に約 $1, ~ 3, ~ 50 \%$ であり，オアシス の規模は傾斜が皧やかなほど大きくなっている。保柳 （1976：27－29）は，タリム盆地におけるオアシスの規模 の違いを上流地域の高さと万年雪の分布に求め，北側の ものを平地の大オアシス，主に南側のものをテーラス頂部（の末端か，著者注）の小オアシスとしている。山地

地域を除いて盆地側から検討すると，扇状地（主に扇央）部分の傾斜がアクス河とホーティェン河とであまり差が ないことから，扇端部分の下流側への広がりが山枇オア シスの規模を規定していることがわかる。

アクス河は，地下水の局地的な基準面となるタリム本流までの距離が相対的に短いため地下水位が低下しにく く，また緩傾斜であるため屚端部分が三角州（扇状地性三角州）の形状を呈して本流へ合流している。アクス河 の山麅オアシスが，傾斜の䢩緩点からかなり下流側まで広がっているのは，このためである，また，傾斜が緩や かになるほど，泥質な河床堆積物が卓越して地下水位の低下が抑制されるとともに流速が幄くなるため，蒸発に よる水分の消失が增加するので，塩の沙漠化が生じやす い。さらに，アクス河のこのような地形条件は洪水氾濫 を発生させやすく，しかも一度湛水すると水がひきにく いという特性をもっており，塩類の集䅡を促進しやすい といえる。

一方，タリム盆地北縁側は強い卓越風の風向きか大局的には北寄りで（吉野，1991），砂の主要供給源である タクリマカン沙漠に対して風上側に位置すること，さら に卓越風の風上側は河川の上流側で河床堆積物はオアシ ス付近よりも粗粒化することなどにより，砂の沙漠化は起こりにくいと判断される，これに対して，塩類の集積 を促進する日射条件はタリム盆地全域でさほど大きな違 いは認められず，この面では南北における相違は現われ にくい。

これらのことから，アクス河の山棪オアシスの下流端付近は，3河川の扇状地の中で最も広い範囲で塩の沙漠化が生じやすいことになる。そして，このようなアクス河で推定される塩の沙漠化への傾向は，タリム本流が盆地の北縁に近い部分を通過して合流点付近の地下水位の低下を妨げることから，北側からタリム本流へ流入する支流の扇端付近でほぼ共通するものと判断される。タリ ム盆地北縁側のオアシス付近には，塩性湿地が多い（西北師範学院地理系，1984）が，この点も塩の沙漠化の発生しやすさと調和的である。

なお，流典の減少期になると，本流まで水流が到達し ないヤルカント河やカシュガル河の下流（末）端付近に みられる分流部分でも，同様に上流側における河川水の取水の增大により塩の沙漠化が起こりやすいことが推定 される。

2）砂の沙漠化

砂の沙漠化が発生するには，いくつかの条件が必要で ある．まず，供給源となる移動可能な砂が大吾に存在す ることである．既存の砂沙漠の縁辺部では，砂質の堆稓

物が毎年卓越して供給される餾広い河床の存在などの地形的条件が必要である．幅広い河床には，流冓の季節変化が著しい河川の場合，流皿が大きく減少する季節に移助可能な粒子が豊富に存在する。 さらに気候的には，強 い卓越風にさらされることである。人為的にタマリック スなどの樹木が取り除かれると砂の移動が容易となり，砂の沙漠化を引き起こす風の影響は加速される。

ホーティェンオアシス付近は，既に述べたように砂の侵入が活発であり，砂の沙漠化を受けているところああ る．さらに，タクリマカン沙漠を流下するホーティェン河の下流地域では，河床への飛砂の堆積が活発なため古 い段丘面が新規の段丘面の下に埋䅡される一種の天井川化が進行し，下流側ほど著しいことが指摘されている （違藤ほか，1993；ENDO et al．，1993）。一方，河床縦断面（図3）からみると，ラワク遣跡で述べたように，ホー ティェンオアシスの下流側末端付近は地形的には塩の沙漠化が発生しやすいところである。 さらに，その付近の河床堆稅物もシルト以下の粒子が多く（図6），地下水位が低下しにくいので㙁の沙漠化にとっては好ましい条件を借えている。

河床付近では，一般には下流側ほど水を通しにくい細粒な堆程物が卓越する傾向があるため，砂質の堆䖽物が卓越するところと相対的に地下水位が高いところとは必 ずしも一致しない。後者の方が，前者に比べて一般的に は下流側に分布する。この点からみれば，初期の段階に おいては砂の沙漠化が起きやすいところと，塩の沙漠化 か起きやすいところとは空間的に異なることになる。

飛砂による被澓は，移助できる未固結の砂が存在する場所の風下側で生じる。したかっって，飛吵による沙漢化 と塩類集積による塩の沙漠化のいずれか顕在化するかは，対象とする地域の地形条件，移動できる砂の存在，その砂を移動させる卓越風に対する位瓦などが関連すること になる．ホーティェンオアシスの北縁付近では砂の沙漠化に悩まされ，ラワク缱跡は砂に埋もれていた。これら の事実は，㙁の沙漠化を征い隠して砂の沙漠化が進行し てきたことを示している。このことは，基本的には，砂 の主要な供給源であるタクリマカン沙漠の風下㑡に当オ アシスが位緼することに規定されている。

ホーティェン河の場合，扇端の下流側は日本の平野で は自然堤防帯（ただしここでは自然堤防は形成されてい ない）に相当し，1本となった流路がタクリマカン沙漠 の中を流下している。扇状地部分で分流した流路は，下流になるにつれて数が減る。この過程で，一般的には消㳚する流路付近で塩の沙漠化が発生するはずである。し かしホーティェン河では，この分流の数が減少する部分 がタクリマカン沙漠の移動砂丘地域に含まれるため，塩

表1．タリム盆地の南北両縁の比较

	オアシスの髤類	山能オアシス の勾配	タリム河合流 までの地形	本流までの流路形状	卓越風との関係	沙漠化
$\begin{aligned} & \text { 北 緑 㑡 } \\ & \text { (アクス河) } \\ & \hline \end{aligned}$	山罭型	級	屈状地性三角州	短く，分流，勾配急	風上側	塩の沙檴化＞ 础の玅资化
$\begin{gathered} \text { 南緑 侧 } \\ \text { (ホーティェン河) } \end{gathered}$	山麗型河畔型	急	砂丘	単一，長く天井川化，勾配綬	風下側	砂の竗淡化＞ 塩の玅溚化

の沙漠化とともに砂の沙漠化が発生し，時間の経過とと もに砂の沙漠化が風下側へ拡大するようになる。
風成砂の供給が多い条件のもとで流量が減少すると，扇面上を分流する河川では各々の河道の固定化か進行す るとともに飛砂に䍜われやすくなり，時には流路の上流部分が飛砂で埋䖽され流れのとだえることが生じる。ラ ワクの仏塔の存在を支えた流路は，まさにこのようにし て水がきなくなったものと考えられる。

3）風食の沙漠化

ロプノールへ河川水が流入していた時期には，適当な地下水位の下でタマリックスが生育し，そして，主に河川で運ばれた砂が水位の低下した季節に風で運ばれ，紅柳包が形成された。 しかし，流入水がとだえるかあるい は激減して河川からの砂の供給が衰え，さらにタマリッ クスも枯死すると，紅机包の形成は終了し，これに代わっ て，砂やより細かい粒子を削磨材料とした風食か活発と なり，紅柳包もこれにさらされるところとなった。

風食を受けた紅柳包は，河川が枯れたことにより，砂 の堆積地域から風食の沙漠化地域へ変化したことを示し ている（SoнmA，1995）。これは，ロブノールの周辺に はかつての大きな淡水湖時代に堆積した泥質属が広く分布することや強い北東風にさらされることなどに加えて， この地域の北側に存在するクルックタークへの降水血か少なく（保柳，1976），河川からの砂質堆䅡物の供給が極めて少ないことによるものと判断される。

一般に河川の下流地域では，洪水汇濫かなくなり流水 も到達しなくなると，河からの土砂供給がとだえる。と りわけ，強風下におかれた乾燥地域では，砂丘に鳆われ るか風食を受けるかのいずれかとなりやすい。そして，泥質な堆積物が地表面に露出した場所では，地面付近を移動する砂の供給が砂丘を形成するほど多くないと，ヤ ルダンか形成されやすい。ヤルダンは，ロブノール周辺 のみでなく小規模なものが河川の氾濫原に分布している ことがあり，また塩類皮殻に澓われた地形面から発達し たものも多い。ヤルダンの存在もまた，風食の沙漠化地城への変化を示している。

4）沙漠化の過去，未来

タリム盆地では，南から流入（北流）する河川沿いに，砂に埋もれた（砂の沙漠化を受けた）避跡が多いことは よく知られている（たとえば，STEIN，1921）。 たとえば ヶリヤ河の下流地城では，ユーティェンオアシスの下流約 150 km 付近に漢代から唐代頃まで利用されたカラド ン边跡（STEIN，1903）が存在し（図1），また，二ヤ川沿 いには山槐オアシスであるミンフォンから北へ約 120 km付近に，熯代から3～4世紀に栄えた二ヤ遊跡（大唐西域記）がある．いずれあ，かつての水量が多かった時期にタクリマカン沙漠の中に形成された河畔オアシスで ある．さらにラワク虺际も，かつての水量が多い時期に形成された河畔のオアシスという点で共通する．これら の缱跡は，その後河川流開の減少とともに砂の沙漠化を受けたところである。

しかし，タリム盆地南縁付近に想定されているいわゆ る西域南道に近い，現在廃虚となった蚊跡か，すべて砂 の沙漠化を受けているわけではない。ゴビタンに立地し たメリカワット虺跡やミーラン避跡では，砂の沙漠化は顕著ではなかった。 これは，これらの虺跡が付近を流れ る河床から供給される砂の周が少なく，また現在のバル ハンフロントから大きく離れているためである。

すなわち，西域南道付近で砂の沙漠化を受けた䖞跡は山簏オアシスよりも下流側の河㫠に位㯰し，流田の減少 に伴い河川の水が到達しなくなった点で共通している。

なお，同じように河川の水が到達しなくなったところ でありなからら，ラワク遊跡は砂の沙漠化を受け，楼聞で は風食の沙漠化が生じた。これは，砂に澓われるか，あ るいは砂で削られるかの違いである。 したがって，両者 の違いを決定したのは，風による砂の供給里の差である と判断される。

ところで，蛽跡における沙漠化は当然過去に発生した ものである．これに対して，ユーティェンオアシス付近 の現状は，将来の砂の沙漠化を予想させるものがある。 すなわち，ケリヤ河の下流地域ではバルハンフロントは既に河道付近へ侵入し，さらに風下側である上流（ユー ティェンオアシス）側へ前進している。一方，ユーティェ ンオアシス付近では，すぐ下流側で塩類の集積が進むと

ともに，その東方からもバルハンフロントが近づいてい る．上流側も含めて，オアシスの拡大および河川水の人為的消費の增大がこのまま将来も継続すれば，ユーティィェ ンオアシスの下流側先端部分ではタリム盆地の山䮈オア シスの末端付近と同様に塩の沙漠化をまず受け，さらに その後，砂の沙漠化を受けることが予想される。時には，飛砂による地表面の被剂と塩類の集栍とが同一の場所で同時に生じることも予想される。それは，ラワク虺跡付近が経てきたのと同じ道であろう。

5．ま と め

沙漠化の実悲が気候条件および土地的な自然条件など の達いによりどのように異なるかについて，タリム盆地 を例として，歴史時代の蛽跡における立地環境の変化と の関わりを含めて検討した。その結果，以下の点が明ら かとなった。
1）タリム盆地では強い日射を長時間にわたって受け るため，地下水位が高いところでは常に塩の沙漠化を受 けやすい。とりわけ，タリム盆地へ北側から流入する河川の山蠞オアシスでは，卓越風の風上側に位置すること も加わり，河川水の人為的取水且の增加などによりタリ ム河に合流するまでの三角州扇状地的な分流部分で塩の沙漠化が生じやすい。

2）タリム盆地へ南側から流入する河川の山䈭オアシ スでは，塩の沙漠化に加えて，風上側にタクラカマン沙漠が存在するため砂の沙漠化が生じやすく，後者による被害がとりわけ深刻である。山槐オアシスの下流側に長 く延びる流路沿いでは，河床勾配が緩く，しかもタクリ マカン沙漠の中を流下するため，砂の沙漠化が極めて生 じやすい。 かつてのシルクロードに関連する，これらの河川に沿う河畔のオアシスとして成立した蛽跡は，いず れも砂の沙漠化を受けて現在砂に埋もれている。

以上の点をアクス河とホーティェン河を例として盆地 の南北を比較すると，表1のように要約される。

3）塩湖時代のロプノールに近接して栄えた楼開周辺 では，背後の山地であるクルックタークでの降水吾が少 なく河川からの砂質堆䖽物の供給が極めて少ないため，河川が枯れたことにより，砂の堆積地域から風食の沙漠化地域へと変化した。

4）どのような沙漠化が発生するかを規定する主要な要因は，山麓オアシスを含めた下流側の地形条件，砂を活発に移䣦させる卓越風に対する位置関係，そして，そ の卓越風で迎搬される砂の且であると判断される。

靸 辞

本論文をまとめるにあたり，日本大学文理学部の碑藤邦彦教授にはタクリマカン沙淡での日中共同研究に参加する機会を与 えていただき，千革大学环境リモートセンシング研究センター の石山 隆助手にはSPOT画像の利用に便宜をはかっていただ いた．さらに，罟名の直跴者から適切なコメントをいただき，奈良女子大大学院生の Inge DaNiELS さんには英文を校閲してい ただいた。記してこれらの方々に謝意を表します。

引用 文 献

阿部治平•㵡井正一畀（1986）：「中国の自然地理」東京大学出版会．任 美鉒主編（1982），「中国自然地理網要（修町版）」
誠一•双 新成•曹 琼英•㮩 桂金•谓 元杰•間 暊•李 元芳•朱 衛東（1992）：タクラマカン沙莫克里雅河流域 の地形•堆程物と古球境．科学技術厅研究開発局「砂漠化機梅の解明に関する国際共同研究」平成3年度成果報告哲：43 －56．

李 元芳•朱 衛東（1993）：タクリマカン沙葆和田河流域の地形•堆䖽物と古环境．科学技術庁研究開発局「砂淡化機槁 の解明に関する国際共同研究」平成 4 年度成果報告安：1－23．
保杒堲美（1943）：「北支•蒙古の地理」古今䇛院。
保彻睦关（1976）：「シルク・ロート地带の自然の変逻」古今晢院．
畉牧もとこ・遠藤邦彦•浜田誠一（1994）：タクラマカン沙漠に おける風成現境の変退。「日本第四紀学会酸演要旨集」24： 74－75．
何野通协（1986）：中国における砂漠化の現状と防治策．「国嘹带林咩協力」 9－3：53－67．
松本 洶（1988）：轮稪地域における水利用と塩類集䅡．「地理学砰論」61A：155－169．
長沢和俊•NHK取材班（1980）：「NHK大英博物館 5—中央ア ジア・東西の文明 の十字路一」日本放送出版協会．
小野有五•相馬秀度•流辺満久•宮原智哉•蔏川格司•趋 元杰（1994）：コンロン山脈西部，ムスターグ・アタ，コングー ル周辺の氷河地形．「日本地理学会予稿集」 $45: 20-21$ ．
相馬秀原（1995）：楼関古城付近の地形．「奈良女子大学地理学研究報告」V：27－46．
誠一•旡 副成•世 琼英•稏 桂金•翅 元杰（1993）：夕 クラマカン沙漠の段丘形成と砂丘地形からみた更新世末期以降の古珢境一ケリヤ河を例として一。「地形」 14 ：245－263．
吉野正敏（1991）：新出の沙溑地域の風と雨．「沙漠研究」 1 ： 1－15．

西北師幯学院地理系（1984）：「高等学校教学参考用 中国自然地理図集」地図出版社．
布泊琼洼地土塊盐分䍗䖽規律的初歩研究．中国科学院新留分院罗布泊総合科学考察榢：「罗布泊科学考察与研究」171－181．
中国科学院「中国自然地理」編集委目会（1981）：「中国自然地理 地表水」．科学出版社．
中国科学院間州边漠研究所（1980）：塔克拉瑪干沙漠風沙地猊図 （1：1500000）．科学出版社．

朱 祳立•邡 恒文•呉 功成（1964）：塔克拉珏干沙㗛西南地区緑侧附近沙丘移動的研究。「地理学報」30－1：35－50．
朱 屒立•到 怨（中国科学院間州沙贷研究所）（1981）：「中国北方地区的沙漠化過程及其治理区」中国林䉾出版社．

Endo，K．，Xia，X．，Cao，Q．，Mu，G．，Zhao，Y．，Ji，Y．，Yan，S．， Kanemaki，M．，Watanabe，M．，Sohma，H．，Hamada，S．and Fujikawa，K．（1993）：Terraces and sand dunes along Keriya River in Taklimakan Desert，China．Abstract of 1993 Japan－China International Symposium on the Mechanism of Desertification．March 2，1993，Tukuba，Japan．
Endo，K．，Kanameki，M．，Watanabe，M．，Ono，Y．，Sohma，H．， $Z_{\text {HAO }}$ ，Y．and Mu，G．（1995）：Environmental changes in and around Taklimakan Desert and the surrounding areas．Pro－ ceedings of The International Symposium on Paleoenviron－ mental Changes in Tropical－Subtropical Monsoon Asia： Research Center for Regional Geography，Hiroshima Univer－
sity， 24 ：177－187．
Hedin，S．（1940）：The Wandering Lake．New York．（岩村 忍•矢崎秀雄跀（1943）：「さまよえる湖」筑摩幅房）
Kanemaki，M．，Endo，K．，Xin，X．，Cao，Q．（1993）：TL ages of sand dunes in Keriya River Field，Taklimakan Desert．Pro－ ceedings of 1993 Japan－China International Symposium on the Mechanism of Desertification：March 2，1993，Tukuba， Japan．
Sohma，H．（1995）：Environmental changes in the Taklimakan Desert．Silk Roadlogy， 1 （Space Archaeology）：39－54．
Stein，A．（1903）：Sand－buried Ruins of Khotan．London．
Stein，A．（1921）：Serindia－Detailed Report of Explorations in Central Asia and Westernmost China．V：Maps．Motilal Babarsidass．
Zivu，Z．，Lun，S．，Wu，Z．and Dl，X．（1986）：Desert in China．Insti－ tute of Desert Research，Academia Cinica Lanzhou．

Desertification in the Taklimakan Desert : Salinization, expansion of sand-covered area and wind erosion

Hidehiro Sohma ${ }^{\text {. }}$

Differences in the types of desertification that occurs in and around the oases in the marginal part of the Tarim Basin, north-western China were investigated, focusing on the differences in climatic and terrestrial conditions based on ground and satellite images observations. Attention was also paid to environmental changes taken place around Lou-Lan and other historical ruins. The main results obtained can be summarized as follows:

1) In general, because of intense and long-lasting sunshine resulting in high evaporation rate and the rapid increase in artificial use of river water for irrigation, desertification in the form of salts accumulation, i.e., salinization has predominantly progressed in the areas where groundwater level is high. Especially, in the large-scale piedmont oases, which are situated in the northern and northwestern part of the Tarim Basin and are formed in connection with tributaries of the Tarim River originating from glaciated high mountains, this type of desertification is common to every oasis. This has been caused by the coupled effect of prevailing winds from the northwest and northeast that evacuate the sands of the Taklimakan Desert to the opposite directions, and of long and gently sloping braided channels that help both evaporation of groundwater and stag. nation of floodwater for a long period.
2) Piedmont oases on the southern margin of the Tarim Basin, situated in the leeside of the prevailing winds, having been suffered from the encroaching aeolian sands from the Taklimakan Desert and from salts accumulation. In the oases on the lower reaches of the rivers extending into the Taklimakan Desert from southern piedmont oases, invasion of aeolian sands has a special importance. On the lower part of the southern piedmont zone, there were riparian oases which prospered in relation with the Ancient Silk Road. They turned into ruins and are now covered with a thick deposit of dune sand, owing to environmental changes taken place in the recent past. This has occurred as a result of decreased running water assumed to be caused by a decrease in the volume of mountain glaciers in the headwaters.
3) Lou-Lan prospered in relation with the Ancient Silk Road as a riparian oasis close to the Lop Nor when it was in the salt lake stage. Because of low elevation, the mountains, situated in the northward of Lou-Lan, have received a small amount of precipitation and supplied a limited amount of sand particles to the downstream areas. For this reason, when the running water in the Lou-Lan area ceased to flow, it changed from an area of sand deposition characterized by the formation of tamarix cones to an area of severe wind erosion dominated by yardan topography.
4) It is concluded that main factors controlling desertification types in the Tarim Basin are; geomorpho logical conditions of the lower reaches of rivers, position of the oases in relation with the sands moving from the Taklimakan Desert by the prevailing winds, and the amount of movable sands.

Key Words : Desertification, Salinization, Moving sand, Wind erosion, Silk Road, Taklimakan Desert

[^4](Received December 25, 1995 ; Accepted February 2, 1996)

The Problem of Desertification in the Marginal Regions of the Taklimakan Desert

Zhenda Zhu＊and Tao Wang＊

Abstract

The areas of desertified land in the marginal regions of the Takalimakan Desert are more than $28,300 \mathrm{~km}^{2}$ ，of which 58.5% was formed during the historical period and 41.5% during the last century．The desertification in the historical period mainly occurred in the oases which were located in the lower reaches of rivers in the southern and eastern parts of the desert．In the northern part of the desert，due to the changes of the river course or irrational practice of irrigation，the farmlands were desertified by wind erosion and salinization．Since the last centry，the processes of desertification in the regions have been accelerated due to the increase of human impacts on land and water．Meanwhile，some areas were suffered from sand dune encroachment．

Based on the study of desertification in the marginal regions of the Taklimakan Desert，we can point out its regionality and suggest some combating measures as follows：

1．The areas along rivers：Most active and severe desertification occurred during both his－ torical and present periods，especially in the last 100 years．It is necessary to work out an over－ all programme of rational water resources management to avoid over－utilization of water in the upper and middle reaches，to prevent serious salinization and shortage of water in the lower reaches，and to protect oases from wind erosion and encroachment．The oases should be protected by wind breaks belts．

2．The shrub－covered sand mounds areas around the newly cultivated land：Shifting sand and deflated land spread rapidly and the degree of desertification is severe and moderate．The controlling measures should be taken to protect the existing vegetation，to establish artificial forest for decreasing wind erosion，and to improve agricultural environment in the cultivated areas．

3．Unused areas along the rivers：Wind erosion and／or salinization are too serious to be used for cropland．Most of those areas have Populus diversifolia forests．So better way is to keep them as natural conservation areas．

Key Words：Desertification processes，Desertification control，Marginal regions，Taklimakan Desert，China

1．Introduction

The Taklimakan Desert is situated in an in－ land basin，Tarim Basin，in which alluvial and lacustrine deposits are widely distributed．Al－ though we take it as an original desert which cannot be related to desertification since it was
formed in prehistoric times．It is not difficult to find the different features of desertification， which were developed during human history， in the marginal regions，especially around oases and along rivers．According to the stud－ ies we carried out since the late 1950s，the Taklimakan Desert，in which eolian landforms are composed of different dunes with huge

[^5]（Received November 10，1995；Accepted February 2，1996）
bodies and vast areas, was formed gradually from Mid-Pleistocene to Holocene (Zhu, 1960, 1961, 1962, 1964; ZHU and WU, 1980; ZHU et al., 1980, 1981). The dry and windy climatic conditions created the desert. So, when we discuss desertification in the region, we do not include the desert areas since what we believe the desertification is land degradation resulting mainly from adverse human impacts (Zhu and LiU, 1981; Wang, 1986). But in the marginal regions of the desert there are many processes of land degradation, such as wind erosion, salinization and dune encroachment (Z_{HU} et al., 1982; Zhu and LiU, 1989; Zhu and Wang, 1990; Yin et al., 1992). There are many ancient cities and abandoned oases of Han Dynasy (since 206 B. C.) and Tang Dynasty in the marginal regions and along the Silk Road which were buried by sands, such as Loulan, Andir, Jinjue, Kalaton, etc. (Fig.1). All of those prove the environmental degradation and desertification. Beside the historical records, the present processes of desertification should bring to more attention on the utilization of natural resources. It is im-
portant to learn lessons from the past environmental changes and desertification as well as to combat the degradation at present and to prevent it for the future (ZHU and LiU, 1981, 1989; ZHU and WANG, 1993).

2. Historical Desertification

The historical desertification means those happened in the historic time due to human impacts. The major desertified lands were formed in the lower reaches of rivers, along the rivers and in the alluvial fan areas with different characteristics.

1) Southern and Eastern Parts of the Taklimakan Desert

In the southern regions, some ancient cities and towns are distributed along the rivers in the periphery of the desert. They are formed in the lower reaches of interior rivers but not in the areas with sand dunes. A document from the Han Dynasty, i. e., Western Regions Biography, Qiemo and Jinjue (Nos. 4 and 6 in Fig. 1)

Fig. 1 The abandoned ancient oases by the desertification in Taklimakan Region.

1. abandoned ancient oases (1: Loulan ancient city, 2: Miran ruins, 3: Waxxari ancient city, 4: Ancient Qiemo, 5: Andir ancient city, 6: Niya ancient city, 7: Kelaton, 8: Dandanwulik, 9: Wucengtoti, 10: Laodamago, 11: Bugaiwilik, 12: Yuetgan, 13: Canggui ruins, 14: Ancient Pishan ruins, 15: Mazartag ruins, 16: Kehan city, 17: Daman town, 18: Tuohushalai, 19: Kalayurgun, 20: Dawangkum, 21: Tongguzibashi, 22: Yangdakeqin, 23: Yangdakesar, 24: Qiongsar, 25: Ganshijiati, 26: Pijiak, 27: Heitaiqin, 28: Zhaoguot, 29: Yeyungo, 30: Ziniquanzi, 31: Yinpan), 2. old oases, 3. new oases, 4. sandy desert, 5. marsh, 6. salt marsh, 7. lake, 8. seasonal lake, 9. river, 10. dried river, 11. city and town, 12. road.
were thickly inhabited oases. These oases were desertified later. For example, ancient Loulan (No. 1 in Fig. 1) on the delta in the lower reaches of the Konqi river was a prosperous town in the Han Dynasty, but at present, the landscape is dominated by the distribution of barchans and barchan chains, Yardan and bush-covered sand mounds throughout the whole region. The ruined town Kelaton (No. 7 in Fig. 1) on the delta in the lower reaches of the Keriya river and that of Jinjue on the delta in the lower reaches of the Niya river are noted for their alternating distribution of bushvegetated sand mounds, barchans and barchans chains. The preserved living quaters, cropping fields and irrigation system in these ruined ancient towns indicate that these places were oases with good condition for living and agricultural practicing. For example, radiocarbon dates obtained from unearthed relic of wood for a house at the ruined town Kalaton, which was located in the lower reaches of the Keriya river, suggest that some houses were built about 2,130 years B. P., and the town was settled until the 4th to 5th century. But it was abandoned because of some reasons, such as excessive use of water in the upper and middle reaches of the river, destruction of water conservancy by warfare and the changes of river courses due to silt deposition. The events reinforced the gradual abandonment of the oases relying on the rivers in the arid zone. Natural vegetation on the two banks of the rivers withered and died. Under wind action, sand plains were developed into the landscape of alternating bush-vegetated sand mounds and barchans or barchan chains. Sand dunes in the outskirts of the oases started to encroach since the oases themselves lost their vegetation protection. Sand invasion caused gradually the oases in the lower reaches of the interior rivers to be desertified land.

2) Northern Part of the Taklimakan Desert

At the north edge of the Taklimakan Desert there are some alluvial plains along the south foothill of the Tianshan Mountains. It is easy to find some cultivated areas of the Han and the Tang Dynasties, which were already buried by dunes. The immigrants chose alluvial fans with
better phreatic water supply and terraces to cultivate. But due to irrational irrigation during a long time and the rise of groundwater level, it was difficult for the people to avoid the salinization. As a result the cropping was seriously affected and finally the cultivated lands were abandoned. Examples of ruined ancient towns of the Han and Tang Dynasties are found in the periphery of Xinhe, Xayar and Kuche (Nos. 20, 21, 22 in Fig. 1). In these abandoned cultivated lands on the alluvial fans, fine sandy materials overlying the fringe areas and those deposited on dried riverbeds were transported by windforce. This sand transportation reinforced the cultivated lands to extend into the desertified land dominated by bushvegetated sand mounds.

It should be pointed out that the desertification took place generally in arid areas as soon as the river course changed through human intervention such as irrational irrigation water supply or under natural factors. Most of these areas were buried and less populated, so that it is impossible to reverse the desertification.

3. Present Processes of Desertification

During the last century, the desertification in the marginal regions of the Taklimakan Desert has shown an accelerated process. Misuse of water resources in arid zone is the major cause of the process. It is particularly true in the areas along the rivers. For instance, along the Tarim river, a most important river in the desert, agricultural development on a large scale consumed a great deal of water in the upper and middle reaches (for example, irrigated farmland consumes 16,000 to $22,000 \mathrm{~m}^{3} / \mathrm{ha}$ $/ y$). More negative effect on the lower reaches is the construction of reservoirs in the middle of the river such as the Aysamir and the Daixhaizi Reservoirs (Fig. 1). So in the lower reaches river runoff has decreased year by year, especially during dry seasons. Meanwhile underground water level dropped down from $3-5 \mathrm{~m}$ in the 1950 s to $8-10 \mathrm{~m}$ in the 1980 s , and mineral concentration increased from less than $1.0 \mathrm{~g} / \mathrm{l}$ to more than $2.4 \mathrm{~g} / \mathrm{l}$. With the decrease of water supply, the natural vegetation growth declined and great numbers of Populus diversi-

Table 1. Development of desertification in the lower reaches of the Tarim River (\%) (Wang, 1986)

Year	Types of the desertified land			Woodland
	shifting dunes	semi-fixed dunes	fixed dunes	
1958	44.4	23.3	20.6	11.7
1978	54.5	23.5	13.0	9.0
1983	64.6	25.0	5.2	5.0

Table 2. Desertified lands in the marginal regions of the Taklimakan Desert (unit: km^{2}).

Types of desertified land	Desertified area	Percentage of the total
1. Historical period	19,702	58.5
2. Present	13,974	41.5
Total	33,676	100.0
among 2:		
2.1 wind eroded farmland	3,838	11.4
2.2 salinizied farmland	5,410	16.1
2.3 abandoned land because		
\quad of the water-cut off	3,430	10.2
2.4 encroachment of dunes	1,296	3.8

folia lost their regenerative potential. Human excessive collection of fuelwood reinforced the extension of exposed surface. The area of shifting sands was gradually extended under windforce. Tabel 1 shows the development of the desertified areas in the lower reaches of the Tarim river.
Meanwhile the areas of salinized land along the upper and middle reaches of rivers in the marginal regions reached to more than 541,000 ha.

4. The Types of Desertified Land

According to the above analyses, the desertification developed in the marginal regions of the Taklimakan Desert can be classified into following four types:
a. along rivers;
b. in the border areas of alluvial and lacustrine deposits;
c. around and in oases; and
d. oases threatened by encroaching sand dunes.
Table 2 shows the desertified lands in the marginal regions of the Taklimakan Desert. Among the desertified lands 90.7% was caused mainly by human poor management of agriculture or other activities and only 9.3% was

Table 3. Percent changes in the desertified lands in the oases of the Taklimakan Desert during 1958-1978.

	Percentage of the desertified lands		
Region	Year	Shifting dunes	Fixed dunes
North part of Pishan	1958	51	49
	1978	62	38
North part of Yutian	1958	22	78
East part of Jiasi	1978	48	52
	1958	31	69
Lower reaches of	1978	45	55
the Tarim river	1958	43	57

created by natural factors.
The desertification is a gradual dynamic process which is characterized by different environmental conditions from place to place:
(1) Cropland is subject to be eroded by wind if there are no effective windbreaks systems, or is subject to be salinized if irrational irrigation is practiced. It is easy to find desertified landscape resulting from wind erosion or salinization.
(2) In the areas with fixed and semi-fixed sand dunes, the increase of shifting dunes and the decrease of vegetated dunes are the indica-
tors of the development and the intensity of desertification. Table 3 shows the intensification of desertification in the oases areas.
(3) In the areas adjacent to the periphery of sand desert, sand dunes move forward under prevailing winds and the landscape with shifting sand dunes appeared on the rangeland and farmland.

5. Measures to Combat Desertification

In the marginal regions of the Taklimakan Desert, the desertified land has spread quickly and the present situation is serious. Since it was caused mainly by human mistake, if we pay more attention to the utilization of natural resources, such degradation could be prevented and controlled. There are some good examples to combat desertification in the regions and so far adopted measures can be summarized as follows:
(1) Taking the inland river basin as a whole ecological system to prepare a master programme. In accordance with the principles of overall consideration of all factors in the upper, middle and lower reaches of rivers it is important to unify the management and utilization of surface and underground water resources, to allocate reasonably the water supply along the river, to implement the regulation of regional general layout and the structure of irrigated oases which rely on water supply and to establish stable and high efficient artifical ecosystem in the river valley.
(2) Taking irrigated oases as the centre to plant sand blocking belts of grasses (use the surplus water in winter season) at the outskirts of oases and plant mixture sandbreaks composed of trees and shrubs at the margin of oases and farmland protective networks and windbreaks in the interior of oases.
(3) Regarding the moving dunes around the edge of oases, sand barriers should be planted on moving dunes and sand-holding species should be planted inside, and sand barriers and shrublands should be established in the interdunes areas to create a comprehensive protective system.
(4) In the shifting sand dune areas, where traffic lines pass through, to stabilize the dunes
is most necessary. For instance, along the highway connecting the centre areas (oil fields) of the Taklimakan Desert the necessary measures are sand fixation by large checkerboard system and vertical sand barriers. These measures are now working well along the desert highway in the centre of the Taklimakan Desert.

References

Wang, T. (1986): Process in desertification and predicting of its developmental trends in Argan region in the lower reaches of Tarim River, Xinjiang. J. Desert Research (Lanzhou), 6-2: 16-26. (in Chinese with English abstract)
Yin, Z., Yang, Y. and Wang, S. (1992): Holocen Environmental Variation and Prosperity and Decline of Human Civilization in Arid Regions of the Northwestern Part of China. Geology Press, Beijing. (in Chinese)
$Z_{\text {HU, }}$ Z. (1960): The natural features of deserts in the Tarim Basin. J. Geographical Knowledge (Beijing), No. 4. (in Chinese)
Z_{HO} Z. (1961): Some issues on development and utilization of Taklimakan desert. J. Geography (Beijing), No. 4. (in Chinese)
Z_{HO} Z. (1962): The Natural features and its utilization in the southwestern part of the Taklimakan Desert. Study on Desert Control, No. 3, Science Press, Beijing. (in Chinese)
$Z_{\text {HU, }}$ Z. (1964): A study on dune-movement nearby oases in the southwestern part of the Taklimakan desert. Acta Geogr. Sinica (Beijing), 30-1. (in Chinese with English abstract)
ZHU, Z. and Liu, S. (1981): Desertification Processes and Its Combating Regionalism in the North China. Forestry Press of China, Beijing.
Zhu, Z. and Liu, S. (1989): Desertification and Rehabilitation in China. Science Press, Beijing. (in Chinese with English abstract)
Zhu, Z. and Wang, T. (1990): An analysis on the trends of land desertification in North China during the last decade based on examples from some typical areas. Acta Geogr. Sinica (Beijing), 45-4: 430 -440. (in Chinese with English abstract)
$Z_{\text {HU, }}$ Z. and WANG, T. (1993): The trends of desertification and its rehabilitation of China. UNEP, Desertification Control Bull., No. 22: 27-30.
Zhu, Z. and Wu, Z. (1980): Deserts in China. Science Press, Beijing. (in Chinese)

Zhu，Z．，Zhong，D．and Li，B．（1980）：The Map of Aeolian Landform in the Taklimakan Desert．Cartographic Publishing House，Beijing．（in Chinese and Eng． lish）
Zhu，Z．，Chen，Z．，Wu，Z．，Li，J．，Li，B．and Wu，G．（1981）： Study on the Geomorphology of Wind－drift Sands in the Taklimakan Desert．Science Press，Beijing．（in

Chinese with English abstract）
ZHU，Z．，Hou，R．and Liu，S．（1982）：The changes of desert during historical period．In Physical Geogra－ phy of China ed．，Physical Geography of China（His－ torical Physical Geography），Science Press．Beijing． （in Chinese with English abstract）

タクリマカン沙漠周辺地域における荒漠化問題

朱 震達••王 漪＊

タクリマカン沙漠の周辺では， $28,300 \mathrm{~km}{ }^{2}$ 以上の土地が荒漠化に䍙されている。その 41.5% は過去の 100 年のうち に生じた。歴史時代における荒漠化は，主に南部及び東部の河川の下流部に位葛するオアシスで起きている。北部で は，河川流路の変動または不適切な灌溉のために，農地が風食と塩類集積によって荒漠化した。荒漠化のプロセスは，前世紀以来，土地と水に対する人間活動のインパクトの強化に伴って加速されてきた．砂丘の侵入に育かされている地域もある。

タクリマカン沙漠周辺における荒漠化の地域性とその防止対策の要点は次のとおりである。
1．河川沿岸地域：歴史時代以来，特に最近の100年間に顕著な荒漠化が進行．上•中流域での過剩な水利用の是正，下流域での顕著な塩類集程の防止と水不足の解消，オアシスの風食と砂丘の侵入からの防諁を可能ならしめる総合的 な水資䃇管理の実施と防風林の造成によるオアシスの防葓から必要とされる。
2．新たに開拓された带地周辺の淮木被覆砂マウンド地域：流砂と風食土地が急速に拡大し，極ないし中程度の荒漠

3．河岸沿いのその他の地域：風食と塩類集積がひどいため耕地としての利用は不可能．胡楊（Populus diversifolia） の残存林を自然保護地域として保全することが望まれる。

[^6]（受付：1995年11月10日，受理：1996年2月2日）

Land Use and Land Degradation in the Tarim Basin， Xinjiang，China

Tao Wang ${ }^{*}$

Abstract

In the Tarim Basin，the land use for agriculture has a long history，and has played a deci－ sive role in the social and economic development．The human impact on the land for improv－ ing the environment is considered to be favorable for the sustainable development，such as the expansion of the old oases，the exploitation of the new oases，the increase of artificial woodland and the construction of irrigation and drainage systems and reservoirs．Those brought about a great advance in agricultural production．But，because of unreasonable way and intensity of the land use with the limited natural resources and the very fragile ecosys－ tem，the land degradation，such as salinization，deforestation and sandy desertification ex－ panded quickly，resulting in a heavy loss of the natural resources．Especially，during the last 100 years，along with the continuous increase of the population and the human economic ac－ tivities，the over－cultivation，over－grazing，over－gathering of the fuelwood and misuse of water resources become more and more serious，which led to a large area of degraded land．Up to now，there are at least $5,410 \mathrm{~km}^{2}$ of salinized land and $8,570 \mathrm{~km}^{2}$ of sandy desertified land．So the combating land degradation is the most important task for the sustainable development in the Tarim Basin．

Key Words ：Land use，Land degradation，Tarim Basin，Xinjiang，China

1．Introduction

The Tarim Basin is situated between the Tianshan Mountains and the Kulum Moun－ tains in Xinjiang Uygur Autonomous Region． Its centre part is occupied by the Taklimakan Desert，and many oases are distributed around its border districts．It is a typical interior basin in the extreme arid zone．In the last 100 years， the land use has provided a lot of necessities to the society and has ameliorated the environ－ ment for human survival and development． But，during the same time，a large area of land has degraded due to the poor management of the land use．For example，the salinization was caused mainly by the overuse of water in the upper and middle reaches of the rivers，mean－ while the sandy desertification spread because there was no water supply any more in the lower reaches．In addition，becuase of the over－
gathering of fuelwood，many oases lost their natural windbreaks system and were suffered from the degradation of cropland and rangeland in the oases due to wind erosion．It is very regret for such situations which have not been improved effectively up to now．So it is necessary to evaluate the land use and land degradation from the past experiences and les－ sons．This paper outlines the land use and land degradation in the Tarim Basin and gives some suggestions for a better management of land use and combating the land degradation．

2．Land Use

In the Tarim Basin，except some negative factors like the dry and windy，the climatic conditions have some favorable aspects for land use，such as $\geqq 10^{\circ} \mathrm{C}$ accumulated tempera－ tures are more than $4,000^{\circ} \mathrm{C}$ ，and sunshine times are $2,600-3,000 \mathrm{~h}$（Table 1），meanwhile there is a

[^7]（Received January 10，1995；Accepted February 2，1996）

Table 1. Selected climatic factors in the Tarim Basin.

Region	Mean annual temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\geqq 10^{\circ} \mathrm{C}$ accumulated temperature $\left({ }^{\circ} \mathrm{C}\right)$	Precipitation (mm)	Evapotranspiration (mm)	Sunshine (h)
Kurla	11.3	4,253	52	2,788	2,996
Aksu	9.8	3,788	57	2,500	2,830
Kashgar	11.7	4,194	64	2,400	2,802
Hotan	12.1	4,300	35	2,518	2,695
Ruoqiang	11.5	4,356	17.4	2,902	2,800

fairly large quntity of water resources from surface and groundwater runoff, which make it possible for human survival and development. According to archaeological data, since as early as New Stone Age, the land had been opened up gradually along with the development of the primitive agriculture and animal husbandry. Many cultural relics can be found around the marginal areas of the Tarim Basin, like in Qiemo, Minfeng, Yutian, Pishan, Bachu, Aksu, Kuqa and other places, which prove to the period of early land use of the ancient society between $10,000-3,000$ years B.P. The human influence on the land increased since the economic pattern changed from hunting and gathering to cropping. The earliest evidences of cropping practices have been found in a common grave in the lower reaches of Konqi River like as some unearthed farm implements and wheat grains which date back to 4,000 years B.P. There were more than 10,000 population in the Loulan ancient city at 2,000 years B.P. During the Han Dynasty (206 B.C.220 A.D.), the government had have garrison troops, and peasants opened up wasteland and grew food grains in Luntai. "There are 5,000 qing irrigated farmland (1 qing $=1.82$ ha during the Han Dynasty)" as the historical book recorded. A large-scale irrigation system with channel of more than 50 km in length, constructed in the Han Dynasty, was discovered in the southeastern part of the Xayar Country. Up to the Tang Dynasty ($618-970$ A.D.), the agriculture obtained further development as the areas of farmland expanded and the settlements were full of life in many natural oases so that many towns and cities could left their name along the Silk Road. The irrigation works and cropping agriculture made great advances during the Qing Dynasty (1644-1911). Based on
the reports of the Guanxu 31 year (1905), there were 563 trunk canals and 1,887 branch canals for irrigating 600,000 ha of agricultural land only in the southern part of the Tarim Basin. In brief, a considerable tract of cropland had been formed during the latter half of the Qing Dynasty.
The areas of cultivated land always expanded with the increase of population for a very simple reason, i.e. to feed increased population. Take the Kuqa oasis as an example, there were 24,258 families and 124,872 populations, $33,000-40,000$ ha farmland at the end of the 18th century, 60,212 families and 249,998 population, 83,000 ha in 1949 and 128,128 families, 605,621 population, 115,000 ha in 1988. In the oases of Kaxgar and Yarkant Rivers, there were 152,000 population and 320,000 ha farmland in 1948, 280,000 population and 490,000 ha in 1988 (Wang, 1991). So it was very necessary to build the artificial oases based on the natural oases. Most of natural oases are distributed along the $\mathrm{N}-\mathrm{S}$ trending rivers exhibiting a belt or spot pattern in the marginal region of the Tarim Basin. The artificial oases expanded to the W-E direction, depending on the fertility of the land along the foot of mountains and the convenient conditions to intake channel water into the fields. The areas of cultivated land increased by the linkage of small oases into a larger one or an oasis-belt. This was a positive aspect of land use in the arid regions and was very beneficial. The oases areas in Xinjiang occupy only 4% of the total area but hold 95% of the total population and most of all the social property (HAN, 1991), so the agricultural land use in the oases is of vital importance for subsistence and development. Table 2 shows the land use of the Tarim Basin in 1985 (Wang et al., 1989).

Table 2. The land use in the Tarim Basin as of 1985. (unit: $\times 1,000 \mathrm{ha}$) (Wang et al., 1989)

Region	Total area	Farmland		Woodland		Rangeland		No usable land	
		area	\%	area	\%	area	\%	area	\%
Southern part ${ }^{\text {® }}$	45,434.1	927.6	2.04	729.9	1.61	1,106.8	24.45	32,669.8	71.90
Bayingolin	47,655.6	192.9	0.40	822.5	1.73	9,303.0	19.52	37,337.3	78.35
Aksu	13,211.1	536.7	4.06	834.6	6.32	4,278.9	32.39	7,560.8	57.23
Total	106,300.8	567.2	1.56	2,387.0	2.25	24,688.7	23.22	77,567.9	72.92

-including the Kashgar, Hotan and Kizilusu Regions.

Land use for the farmland under cultivation spread mainly in the middle and lower parts of the deltas, piedmont alluvial fans and the alluvial plains. The crops are wheat, paddy rice, cotton, oil-bearing crops (rape, sunflower etc.), beet, melon and others, and some of them are harvested twice per year. It is a typical irrigated agricultural practice in the arid regions. Other lands are used for orchards of the grapes, pear, apple, apricot, peach and plum. Most of the mulberry fields are located in the Hotan region. The woodlands, which are distributed mainly along the rivers, are composed of artificial ones, like windbreaks forests and fuelwood forest, and natural ones, like the broadleaf forest dominated by Populus diversifolia and P. prunosa, and the shrub forest by Holoxylon ammodendron and Tamarix spp. Most of the rangeland is natural pasture. The desert steppe is located in the plains below $1,000 \mathrm{~m}$ above sea level and the steppe is located between $1,000-$ $1,700 \mathrm{~m}$ above sea level. The waterbody includes fresh and salt lakes, rivers, reservoirs and swamps. There is very limited areas of land for cities, towns and traffic.

The features of land use in the Tarim Basin can be summarized as follows:
(1) The rate of usable land is very low, as noted in Table 2; more than 72.9% of the land is not usable;
(2) The type of land use is not rational. Among the used land, the rangeland keeps about 85.91% with extreme low productivity and economic value. The farmland takes only 5.77%, and the woodland 8.32%;
(3) The areas of land use for non-agriculture purpose is small, only about 1% of the total land areas, because the industry, commerce and communication are not yet flourish;
(4) The regional variation in land use type is
very clear; the alluvial plains and fans with better water and soil conditions are productive areas, the areas along the rivers are broadleaf forests, shrub-lands and better pastures. Other areas are occupied by sandy deserts, gravel deserts (Gobi) and rocks.

Since the 1950 's, along with the pressure of population growth and expansion of production, the area of cultivated land has developed gradually. The population has increased from 4.33×10^{6} in 1949 to 14×10^{6} in 1988 (three times more), and the cultivated land has increased from 1.2×10^{8} ha in 1949 to 4×10^{6} in 1988 (two times more) in Xinjiang. The tolal area of reclaimed wasteland reached $3,580,000$ ha and the net increase of the farmland was $1,867,000$ ha, two times of that before the 1950s. For example, in the catchment of four branches (Yarkant, Kaxgar, Aksu and Hotan rivers) of the upper reaches of the Tarim River, the farmland expanded 300,000 ha more. Many of those newly developed land accomplished the system of wind protecting plantation, which improved the ecological environment and land productivity. Meanwhile, a lot of efforts have been made on the construction of irrigation and drainage systems, and land fertilization, so that the per unit area yield of grains increased from $1,360 \mathrm{~kg} / \mathrm{ha}$ in the middle 1970 's to $2,680 \mathrm{~kg} / \mathrm{ha}$ in the late 1980 's. During the same period, the yield of oil crops and beet also increased from $550 \mathrm{~kg} / \mathrm{ha}$ to $1,180 \mathrm{~kg} / \mathrm{ha}$ and from $11,430 \mathrm{~kg} /$ hat to $26,240 \mathrm{~kg} / \mathrm{ha}$, respectively. In brief, the benefits of land use were tremendous. It has provided all of agricultural production in Xinjiang and proved a decisive effect in improving the well-being of the people and developing the economy and society.

Table 3. The farmland quality in the Tarim Basin as of 1985. (unit: $\times 1,000 \mathrm{ha}$) (Wang et al., 1989)

Region	Area of farmland	First class ${ }^{\circ}$		Second class ${ }^{\circ}$			Third class	
		area	$\%$	area	$\%$	area	$\%$	
Bayingolin	192.90	53.59	27.78	106.51	55.22	32.80	17.00	
Aksu	536.74	308.87	56.80	133.75	24.92	98.12	18.28	
Kashgar	629.31	252.56	40.13	251.50	39.97	125.25	19.90	
Hotan	226.87	142.11	62.64	54.45	24.00	30.31	13.36	
Kizilsu	71.45	12.64	17.70	27.90	39.06	30.89	43.24	
Total	$1,657.27$	764.02	46.15	574.11	34.68	317.37	19.17	

- The first class: good farmland with high quality, without degradation. The second class: land affected by some degraded factors like salinization, waterlogging, wind erosion and so on. The third class: land affected seriously by various degraded factors and land with poor quality.

3. Land Degradation

In the arid regions, the natural oases can be considered as a special ecosystem. The formation and development of every oasis are depended on water supply from the river. Along with the increase of cropping land and the productivity, it has become necessary to reallocate the water resources. As a results the periphery of oases was exploited and a new ecosystem was formed. This is the process of formation of so called artificial oases, which transformed and replenished the natural oases. But if the human activities were not coordinated with the natural environment and exceeded its carrying capacity, the environment will be degraded to unfavorable conditions for the human substainable development, such as the spread of the land degradation (Fig. 1). In the Tarim Basin, those unfavorable conditions have been displayed mainly by the following.

1) Land Salinization

Relied on the better supply of water resources in the upper and middle reaches of rivers, the cropping land expanded in a large scale. For example, only in two years of 1957 and $1958,72,000$ ha or more wasteland were reclaimed, 5 reservoirs and 17 state farms were constructed along the Tarim River. This enabled 122,000 ha or more cropland to be irrigated (ZhOU, 1991). Although the wasteland in the Tarim Basin can be transformed into good farmland through drainage works and desalination, rotation of crops and fertilizing, yet it is easy to lead to the salinization due to an acute
change of water and salt movement resulting from careless management of the land. It is a common problem in many irrigation areas of the Tarim Basin. In the irrigation system, the utilization coefficient of canal water system was low, although a great quantity of irrigation water was supplied to the fields. This was a major reason for leading to a large quota of irrigation. The irrigation way was also poor like as the flood irrigation, so the gross quota of irrigation was more than $16,000^{3} /$ ha and in some areas more than $22,500^{3} / \mathrm{ha}$. Such practice not only wastes the water resources but also cannot meet the water need for crops in the good timing and quantity. This has resulted in the raising of groundwater level, leading to the creation and expansion of the land affected by salinization.

In the Tarim Basin, the farmland can be graded into three classes according to the quality (Table 3). Among the criteria for land evaluation, the most important factor is the salinization. A total of 751,000 ha farmland in the Table 3 was affected by the salinization and more than 72% of those areas have been salinized in different degrees, i.e. about 5,410 km^{2}, which accounted for 32.64% of the total areas of the farmland in the Basin.

2) Vegetation Degeneration

In the arid zone, the decisive factor to the ecosystem is the water, which will affect directly the environment by the changes of its quantity, quality and regional distribution. There are 106×10^{6} ha of cropland in the Tarim Basin and most of them are located in the

Fig. 1. The sketch map showing the distribution of areas affected by land degradation in the Tarim Basin.
upper and middle reaches of rivers. Because more than half of those croplands were opened up since 1950s, much water was used in the upper and middle reaches, so the water supply decreased or even stopped in the lower reaches of every river. This was one of the reasons for vegetation degeneration. Take the Tarim River system as an example, the river valleys converge some river systems, which come down from the Tianshan Mountains and the Kunlun Mountains. There was enough runoff so that a large lake, the Lop Nur Lake with more than $3,000 \mathrm{~km}^{2}$, was formed in the end of the river system. But, during the last 5 decades, due to the development of agriculture and the sharp increase of the water consumed for irrigation, the water supply to the lower reaches has decreased constantly. The artificial Daixihaizi Reservoir became "the end of lake" (see Fig. 1). The lower reaches from the Tikanlik had received less and less runoff from the upper reaches decade by decade as follows: $8-9 \times 10^{8}$ m^{3} in 1950 s . $3.6 \times 10^{8} \mathrm{~m}^{3}$ in $1960^{\prime} \mathrm{s}, 0.55-1.09 \times 10^{8}$ m^{3} in 1970s, less in 1980s and almost 0 since 1990. More than $300-\mathrm{km}$ long river beds dried
out for many years (Zhou, 1991). The groundwater of the both sides along the river course declined quickly from $3-5 \mathrm{~m}$ to $8-10 \mathrm{~m}$ or more. For instance, the groundwater levels were 3-5 m in two wells in 1950s in the Aragan and they descended to $11-13 \mathrm{~m}$ in 1985 (Wang, 1986). The result was that a vast area of the woodland, which was mainly composed of Populus diversifolia, has disappeared along the dried river beds. Table 4 shows the Populus diversifolia woodland degradation in the lower reaches of the rivers in the Tarim Basin (Zнои, 1991). The rangeland degradation was also caused by the shortage of water supply and by the overgrazing sometimes.

The decrease of the water supply, which can be taken as an indirect human impact, was an important factor for the degradation of woodland, but a more important factor, the direct human impact, was to fell the trees for opening up wasteland and to gather fuelwood for heating and cooking, which resulted in the woodland to be destroyed much quickly. Table 5 shows that at least 285,000 ha of Populus diversifolia woodland were destroyed since

Table 4. The Populus diversifolia woodland degradation in the lower reaches of rivers in the Tarim Basin. (unit: $\times 1,000 \mathrm{ha}$)

River	1950 s	1980 s	Decrease \%
Tarim River	54.00	16.40	-69.6
Yarrows River	171.30	94.60	-44.7
Kaxgar River	70.00	28.60	-59.1
Kaxakax River	10.70	1.17	-89.0

Table 5. The woodland degradation in the Tarim River. (unit: $\times 1,000 \mathrm{ha}$)

	Upper reaches	Middle reaches	Lower reaches	Total
1950 s	230.0	175.8	54.0	459.8
1980 s	58.2	100.2	16.4	174.8
Decrease	171.8	75.6	27.6	285.0
$\%$	-74.70	-43.00	-69.60	-61.98

1958 not only in the lower reaches but also in the upper and middle reaches of the Tarim River.

3) Sandy Desertification

The sandy desertification is a major part of land degradation in the Tarim Basin (ZHU and LiU, 1981, 1989; Wang, 1989), which has been mainly caused by the excessive human activities facilitating wind erosion. Wind erosion occurred after the vegetation has been destroyed by over-cultivation, over-collection of fuelwood, over-grazing and misuse of water resources. When wind eroded the farmland and range-land, the top soil was transported to everywhere. The shifting sands accumulated at the leeward side and gradually developed to mobile dunes. The features of the land surface changed to deflated fields. Those processes damaged the structure of the soil and led to a rapid decline of the biomass production and the potential productivity of the land. During the last century the processes of the sandy desertification developed very quickly and were composed of following three main forms:
a) In and around the oases, since the large areas of the woodlands and rangelands were degraded by the different human activites as mentioned above, many oases and farmlands lost the windbreaks systems. Wind erosion not only harmed the farmlands and oases, but also endangered the former woodlands and
rangelands themselves. In this case, most of the shifting sands come from those areas which were suffered from wind erosion. In the Tarim Basin, about $3,840 \mathrm{~km}^{2}$ of desertified sandy land have been developed from this process during the last century (ZHU, 1987).
b) Along the lower reaches of the rivers there were many areas of farmland which had to be abandoned because the water supply had been cut off. Those areas were subject to be eroded by the wind and became to the desertified land in some years later. For example, only in 5 state farms in the lower reaches of the Tarim River had discarded 8,600 ha since 1970s. In Hotan region, more than 30,000 ha of farmland were desertified after they have been given up. The total areas of such desertified land were $3,430 \mathrm{~km}^{2}$ and most of those was formed since 1950s.
c) Since most of the oases face the deserts in the Tarim Basin, it is very difficult to protect the oases from the movement of shifting sands and the encroachment of dunes, although some efforts have been made in some areas. About $1,300 \mathrm{~km}^{2}$ land have been degraded by this process during the last century ($\mathrm{ZHU}_{\mathrm{H}}$ 1987).
So the total areas of the sandy desertification is about $8,570 \mathrm{~km}^{2}$ in the Tarim Basin, which was formed during the last 10 decades.

4. Conclusion

The land use has achieved many good results
and has greatly contributed to the socioeconomic development and people's living standard in the Tarim Basin. But the land degradation has spread seriously too, which has been caused mainly by the unceasing pressure of population and overuse or misuse of land and water. Based on the evaluation, some sug. gestions can be made for improving the land use and combating the land degradation as follows:
a) To reasonably utilize the water resources and to accelerate the development of economized water use for agriculture and intensive farming.
b) To work out a unified plan of land use and to regulate the structure of land use for agriculture, animal husbandry and forestry;
c) To continuously establish the artificial windbreaks system for protecting the oases from wind erosion, and to construct artificial fuelwood forests land and grasslands so that to utlize the natural rangelands and woodlands in a moderate degree for protecting the vegetation degeneration; and
d) to increase the technological and funds input for raising the land productivity.

References

HaN, D. (1991): The strategic points and countermeasures for combating land degradation in Xinjiang. Geographical Symposium of Arid Zone (Urumqi), 2:

122-128. (in Chinese with English abstract)
Wang $^{\text {, }}$. (1991): Current oases and its development tendency in the arid areas of China. Geographical Symposium of Arid Zone (Urumqi), 2: 39-44. (in Chinese with English abstract)
Wang, L. Xu, J. Shi, Z. and Zhen, W. (1989): The Capacity of the Land Resources in Xinjiang. Science Press, Beijing. (in Chinese)
Wang , T. (1986): Process in desertification and predicting its develpmental trends in Argan region in the lower reaches of Tarim River, Xinjiang. J. Desert Research (Lanzhou), 6-2: 16-26. (in Chinese with English abstract)
Wang, T. (1989): A comparative study on desertification of typical areas in Northern China. J. Desert Research (Lanzhou), 9-1: 113-136. (in Chinese with English abstract)
ZHOU, X. (1991): The deserts features and the deserts environmental evolution in Xinjiang. The Desertification and Its Control in Xinjiang, Sceince Press, Beijing: 1-40. (in Chinese)
ZHU, Z. (1987): Desertification processes and developmental tendency in Taklimakan desert region. J. Desert Research (Lanzhou), 7-3: 16-28. (in Chinese with English abstract)
ZHU, Z. and LIU, S. (1981): Desertification Processes and Its Combating Regionalism in the North China. Forestry Press of China, Beijing. (in Chinese with Eng. lish abstract)
ZHU, Z. and LiU, S. (1989): Desertification and Rehabilitation in China. Sceinece Press, Beijing. (in Chinese with English abstract)

中国新疆タリム盆地における土地利用と土地荒廃

Abstract

王 滈• タリム盆地における土地利用の歴史は長く，社会•経済発展のなかで重要な役割を果たしている。その土地利用の変選のなかで，人間は一方では持続的発展のために自然珎境を改変してきた。例えば，古いアオシスの拡大，新たな オアシスの開拓，人工林の拡大，夕ム及び濩溉システムの建柕等が生産の発展を大いに促進している。し加し他方で を著しく進行させており，自然資願の傩失をあたらしている，とくに，踙近100年間の生産活動の㹡大に伴って，過度の開型，伐採，放牧及び水盗㷧の不合理的利用か深刻になってきており，大面程の土地荒廃をもたらしている。こ れまでに，少なくとも $5,410 \mathrm{~km}^{2}$ で塩類集榡が，また $8,570 \mathrm{~km}^{2}$ で敌漠化か進行している。したがって，土地荒㦓防止対策がタリム盆地の持続的発展を可能にするための最も重要な課䫻となっている。

[^8]（受付：1996年1月10日，受理：1996年2月2日）

人工衛星から見たタクリマカン沙漠

ーリモートセシングの応用一

土屋 清••小黒剛成•

1．前 㸵 き

自然嫄境が啟しく，交通手段の乏しい沙漠の地表面状恏の把握には街星による钼測データへの期待が大きい。 タクリマカン沙漠に関しては古くからシルクロードに沿っ ての記録があり，部分的に行なわれた調査結果を取り入 れた，タクリマカン沙漠全体を示す地図等も出版されて おり，街星による調査報告も出版されるようになった （梁•劉，1990；孙•劉，1991）。一方日本でも砂漠化機構の解明に関する中国科学院との共同研究で，杉原 （1991），土屋•石山（1991），土屋（1992），石山ほか （1994），Fujikawa and NaKayama（1994），遠藤ほか （1994）などのタクリマカン沙漠地表面状態の解析例，長島•内田（1991）による3次元地形解析例等の報告が ある．

街屋からの観測データは，観測センサの瞅時視野に対応する対象物からの太陽光の分光反射且または対象物か らの放射呈，あるいは衛星センサから発射するマイクロ波の対象物による反射是（合成開ロレータ）等で，観泪 された田には大気そのほかの影響か入っている。このた めにセンサの䁌時視野に比較して空間スケールの大きな対象物や反射率に顕著な差のある対象物，例えば森林，
裸地，水域等の識別は容易であるが，乾燥地域の土埌水分㚗，塩害の程度，土衵侵食，植生の種別の分類等の分光反射率の徵小差を必要とする問題や，空間スケールの小さな現象の解明等については多くの問題のあることが Hill et al．（1995），Mougenot and Pouget（1993）， EsCADAFAL（1993）等によって指摘されている。これら の問題には，現在の衡星センサの空間分解能もスペクト ル分解能も不十分である。これらの不十分さの補完には連続的に観測された衡星データ，対象地域中の数力所で の衛星钼測と同期した大気や，対象物の観測（ground truth）があればある程度の推定は可能であるが，タク リマカン沙漠のように衛星データ取得の機会が非常に少 ない所では，詳細な解析は非常に難しい。ここでは衛星 の概要の紹介，識論の対象になるような複雑な方法でな

い簡単な確立された処理法による衛星データの応用例に ついて述べることにする。

2．リモートセンシング䘖星

付表1に観測データを誰でもが簡単に入手できるアメ リカ，フランス，日本の衛星の概要を示す。宇宙開発事業団の開発する衛星は，打ち上げ成功後花の名前がつけ られるが，一般には開発中の英語名の略称が使われてい る．例えばMOS（Marine Observation Satellite）－ 1 の日本名は「もも」，JERS（Earth Resources Satel－ lite）－ 1 の名前は「ふよう（芙蓉）」であるが，通常は MOS－1，JERS－1 等が使われている。なおERSは欧州宇宙機関（ESA）の海洋観測を主目的にしたERS （European Remote Sensing Satellite）と区別するた めにJERS－1という略号が使われている，タクリマカン沙漠の場合，この地域をカバーできる衛星データ受信所 が無いので，特定場所の観測に利用できる機会の非常に少ない衛星搭载テーブレコータに頼るしかない。また光学センサの場合昙の下の钼則は不可能なので，実際に利用できるタクリマカン沙漠のデータは非常に少なく，こ れか詳細解析のネックになっている。

3．タクリマカン沙漠の全景

口絵写真1は中国科学院遥感応用研究所で作成した Landsat MSS疑似（false）カラー画像のモザイク画像 に土屋が綼度•経度線を記入したあので，このモザイク には約60シーン（枚）の画像が使われている．前章で述 べたような理由で，雲の無い良好なタクリマカン沙漠の街星データか非常に少なく，このモザイクに使われた画像の钼測年•季節にはかなりの差があり，1972年末から 1970年代末までのデータで，約20年前のタクリマカン沙漠の地表面状㑫を表わしている。

個々の画像には南北方向に約 12% ，東西方向には平均 で約 40% の重複がある。それらの画像のうちの雲の無い，鲜明な所を利用してモザイクしたもので，つなき目が断

図 1．タリム河下流第31～35農団場およびその周辺沙漠域を示すJERS－1 OPS ナチュラルカラー画像．钼測：1992年11月24日。

層のように見える．ただし和田（ホータン）河下流部の A点（ $38^{\circ} 27^{\prime} \mathrm{N} / 80^{\circ} 52^{\prime} \mathrm{E}$ ）付近から西方に伸びる線は麻扎塔格（マザルターク）山脈である。北東部タリム河下流 （B点）付近から中央部，さらにケリヤ河下流（C点）付近にかけては発達した縦列型の砂丘群が見える。

この写真は疑似カラーで，赤い所は健康な植物の多い所，青い所は白色系の砂の多い所，白い所は塩•雪氷•雲等，黒色は水域や影である。北部のタリム河沿いのD点の西側の植生のある所は第2次大戦後，農団（日本語 では農業開拓団に相当）によって農地化された所で，綿花，トゥモロコシの他にかなり広い地域にわたって水稲 が栽培されている．D点東方の黄色の所は，旧河道や洪水／豊水時には水の流れのある所である。現地調査の結果では河川敷や，豊水期に川になったり水の溜まるよう な所では塩が地表面に分布している所が多く見られるこ

とから，これらの場所では塩が表面に分布していたり， あるいは反射の強い白っぽい砂の多いことが推定される。 またこの画像の沙漠の中で青い所は白色系から薄黄色の砂沙漠，褐色の所は疎らな乾燥した植生のあるゴビ（石，磁の多い）沙漠である．北部の天山山脈，南部のコンロ ン山脈等の白い所は雪氷である。この図からタクリマカ ン沙漠および周辺の20年前の全体像の把握が可能である。

4．北東部タリム河下流域（口絵写真 1 の B 点の南東， $31 ~ 35$ 農団付近）

1）土地利用変化

図 1 はコルラ市（口絵写真 1 のE）南東方約 $100 ~ 200$ kmのタリム河とその東方の孔雀河の間に展開している第 $31 ~ 35$ 農業団地（中国語では農団場）と，その南西方

向にある砂丘群を示す1992年11月4日のJERS－1ナチュ ラルカラー画像である。この地域は第 2 次大戦後に，第 $31 ~ 35$ 農団によって農地化され，現在であ小規模ではあ るが多少植生の生えている沙漠地の農地化が行なわれて

図 2．土地利用変化を示す SPOT 画像．上：1989年1月20日，下：1993年4月21日。A，B は農地化 された所． C は今後農地化の可能性のある所． D は梨園．

いる．図2 の上，下の図はそれぞれ1989年1月20日およ び1993年 4 月 21 日の $40^{\circ} 48^{\prime} \mathrm{N} / 87^{\circ} 00^{\prime} \mathrm{E}$ 付近のSPOT画像で，矢印AおよびBの所が1993年には農地化されているのが わかる．1993年8月下旬の現地調査で得た情報では，こ の農団では一般の農産物に加えて，特に梨とその角が秘薬として非常な高値で売れる鹿牧場のおかげで経済状態 が非常に良く，多くの新住宅の建設が進行しており，住民の増加に対応するために農地の開発も必要になってき たとのことであった。Cは今後農地化の可能性のある小灌木や植生等のある荒れ地，Dは梨園である。新たに農地化された面積は，A地点が約120ha，B地点は約70ha である．なお図2で白い所は塩が地表面に斑点状に現わ れている所である。

2）水 分 布

図 3 は1973年 9 月 30 日の Landsat MSS 画像で，図 1 と比較して水域を表わす黒色部，例えば䠉水池（図中の D），その北側にある湖沼等やタリム河南西のタリム河 に接した沙漠域の大砂丘の間の低地等がかなり広い。な お図 1 と図 3 の緯度•経度線は，前者が宇宙開発事業団地球観測センター，後者はNASAの処理によるもので少しのずれがある．現地の第33農団長や幹部の話では上流地域での水使用量の増大のためにこの地域の水量が年々減少しているとのことであった。タリム河下流域の流量減少については梁•劉（1990）等の報告もある．また杉原•石山（1995）の同時期（秋期）の衛星写真によるボ ステン湖（口絵写真 $1,42^{\circ} \mathrm{N} / 82^{\circ} \mathrm{E}$ にある湖）の水域の調查結果でも1973年から1992年の間に湖面水域がかなり減少していることが示されている。タクリマカン砂漠の河川や湖沼の水量には季節変動があるので豊水期の図 3 と豊水期末から少水期に入った図 1 の比較から直ちに水量

図 3．Landsat MSS 画像．
Dは眝水池．Fは小砂丘地域，Gは図2の場所，Eは塩か地表面に現われている所．黒色部分は水域．観測：1973年9月30日．

の経年減少を断定することは難しいが，我々が現地調査 をした豊水期の1993年 8 月中旬には図 $3-$ D点の貯水池 の半分ぐらいには水がなかったことから，この地域の水量の減少していることは確かのようである。湖沼や大き な河の水量の変化の調査に衛星データはかなり有効であ る。

3）タリム河西方の砂丘

口絵写真 1 ，図 1 からも明らかなように，タリム河の南西方の沙漠には発達した縦列型砂丘が連なっている。砂丘の方向はほぼ北東～南西でこの地方の卓越風向（吉野，1991）および新疆ウイグル自治区気候表にある強風 の風向と一致している。図1の砂漠域北西部では北東の方向の砂丘に重畳してそれと直角方向の間隔の狭い起伏 が見られる。砂丘の間隔は場所によって異なり，図1の A，B，C，D点では，それぞれ平均で約 $1.3,1.6,1.7,2.7 \mathrm{~km}$ である．詳細に見ると，図4に示すようにタリム河南方 の大砂丘の上に小砂丘がある。これらの小砂丘の間隔は平均で a の方が約 140 m ， b の方が約 110 m ぐらいである。 タクリマカン沙漠の砂丘の形状の多様性については他に あ報告（ZHU，1986）がある．砂丘の形状は冬の泠たい季節風の暖かい海上への吹出しに伴って発生する対流雲 の形状に似ている。雲の場合，風の強い（風速の鉛直 shearが大）時には風向に平行に並び，弱くなるにつれ て風向に直角に配列し，さらに弱くなるとBenardcell状になる（Tsuchiya and Fuilta，1968）。このことが砂丘形成にも適用できるとすれば北西部ではやや風速が小 さいことになる．

高分解能の Landsat 衛星画像取得が可能になった 1972年後半や1973年頃の画像と最近の画像と比較して，衛星画像の空間分解能の範囲では，大きな砂丘について その形や場所にはほとんど変化は認められない。遠藤ほ か（1994）による沙漠形成史に関する研究によれば，ケリ

図 4．大きな緶列型砂丘上の小砂丘。钼測：1993年4月24日．

ヤ河東岸の緹列砂丘は 1 万 7 千年前に形成され，現在は小砂丘（dune）の形成が主であるとの報告があるが，上記の大砂丘も古い時代に形成されたもので，砂丘の発達 では steady state の状態になっているものと思われる．

5．南部の和田（ホータン）地域

写真1はタクリマカン沙漠砂漠南部最大のオアシス，和田（口絵写真 1 のF）とその周辺のSPOT－2 HRV の疑似カラー表示画像で，西側のカラカシ河と東側のユル ンカシ河（これらの 2 つの河は下流で合流し，和田河と いう名称になる）およびその東側の小さな川の間の青色部分は白っぽい細かい砂からなるバルハン型の小砂丘群，黄色部分は多少の植生のある砂丘群と荒れ地で，地表面 の砂の色は黄褐色系のものと推定される。オアシスの部分が褐色に現われているのは，農地に緑色の植生の少な いこと，農地の周辺の防風林が落葉していることを表わ している．北東部隅には北北西～南南東の縦列型の小砂丘，その下方にはそれと直角方向の小砂丘群がある．

この画像の観測日が 2 月 24 日で気温が低いために，眝水池の表面か結氷して水色に写っている。河岸やオアシ スの中の白い所は，塩ではなく雪氷や霜である。このこ とは1993年3月27日に観測された JERS－1 のナチュラル カラー表示画像（写真 2 ）から明瞭である。この写真は， 3月27日にはオアシスの中では緑色の植生がかなり増加 していることを示している。また河岸や低い土地では雪氷，霜等の融解で土壌水分の増加のために反射が弱くな り，黒っぽく写っている地域がかなりある．

1）和田オアシス北方のバルハン型砂丘群

図 5 はユルンカシ河の東岸 $37^{\circ} 15^{\prime} \mathrm{N} / 79^{\circ} 57^{\prime}$ E付近の東側の拡大図で， 20 m 分解能でのバルハン型砂丘群を示し ている．現地写真（図6）からもわかるように，衛星画像で見られる個々の砂丘はさらに小さな砂丘からなって いる．図5中の解析図は同図上部の直線に沿ってのバン ド $1,2,3$（付表参照）の輝度値のプロフィルで，これか ら計算した砂丘平均間隔は 159.2 m ，標準偏差は 43.6 m で ある．写真の砂丘の影から推定される砂丘の高さは最も高いもので 100 m 以下である。

2）和田オアシスの農地

タクリマカン沙漠オアシスの農地はどこでもきちんと嚄盤の目のように整備され，道路の両側には防砂用のポ プラが植えられている。写真 3 は和田市街地の中心から西方約 $12 \mathrm{~km}, ~ 37^{\circ} 05^{\prime} \mathrm{N} / 79^{\circ} 46^{\prime} \mathrm{E}$ 付近の1992年 3 月 27 日 の農地の状態を示している。緑色部は葉のあるポプラ並

図 5．ユルンカシ河（東側の河）東方のバルハン型砂丘群。
図中の解析図は図中の直線に沿ったSPOT HRVバンド $1,2,3$ の輝度値 （最小 0 ，最大 255 ）プロフィル。観測：1992年 2 月 24 日。

図6．図5 の砂丘の現地写真．撮影：1994年9月6日。

図 7．図3の矢印の所のポブラ並木．撮影：1994年9月7日。

木やある程度生育した作物，黄色部はまだ十分に成長し ていない作物，赤色部は裸地である。
農地はほぼ $500 \mathrm{~m} \times 250 \mathrm{~m}$ に区画され周囲にポプラが植 えられている．農民の住宅はこの中にあり，それぞれの農地はさらに細分されている。図7は写真3の矢印の所 で摄影した写真で，この写真からポプラ並木の大きさが わかる。ポプラ並木は北方からの飛び砂を防ぐために東西方向の道路の両側では幅が広く並木というよりは防砂林という感じである。作物の識別は，作物の生育期の連続衛星画像があればある程度可能と思われる。

3）沙漠化域

タクリマカン沙漠南部では飛砂による沙漠化の危険に曝されている．現地での聞き取り調査では1950年末から 1960年代初めにかけて，盗伐による防砂林の損失，オア シス周辺草原における大規模な薬草根採掘に伴う土壌侵食等のためにかなりの沙漠化があったとのことである。
その後の対策により最近は鎮静化していて，衛星データ が利用できるようになった1972年末からの衛星データ解析では沙漠化域はあまり認められない。杉原•石山 （1994）による和田の東側にある小オアシス，チーラ地区の1973年7月24日と1988年7月27日の衛星データ解析結果では，チーラ市の南東部の貯水池の北方と北東部の

写真 1．タクリマカン沙漠南部最大のオアシス，和田（ホータン）を示すSPOT疑似カラー画像。
観測：1992年2月24日，水色部分は結水している䠉水池，白色部分は雪氷，霜等。

写真 2．和田オアシスを示すJERS－1 OPSのナチュラルカラー画像．黒色部分は水，黒っほい所は土壌水分の多い所，黄色部は疎な小植生のある所．観測：1993年3月27日。

写真 3．和田市市街地中心部西方約 12 km （ $37^{\circ} 05^{\prime} \mathrm{N} / 39^{\circ} 46^{\prime} \mathrm{E}$ 付近）の農地。
緑は植生，黄色は成長過程の小作物のあ る所，赤色は裸地．

図 8．麻扎塔格山脈付近の Landsat MSS（1975年10月4日）（左）とJERS－1 OPS（1992年12月30日）（右）画像． 17年間に大きな変化は認められない。

沙漠との境界の極く狭い場所で沙漠化域が抽出されたが， むしろ農地の拡大の方が大であった。一方，小黒•土屋 （1995a，b）は最も空間分解能の高いSPOT画像による最近の和田オアシスの沙漠化域の抽出を試みたが，抽出 された地域は和田市から遠く離れたカラカシ河（西側の河）の下流 $37^{\circ} 33^{\prime} \mathrm{N} / 79^{\circ} 55^{\prime} \mathrm{E}$ 付近とユルンカシ河（東側） の下流 $37^{\circ} 20^{\prime} \mathrm{N} / 79^{\circ} 59^{\prime} \mathrm{E}$ 付近の防砂林の植林等の対策が不十分な所で，1988～1990の2年間に，ごく狭い所でそ れぞれ約 250 m と 120 m 幅の草原地の裸地化が検出された。

6．麻扎塔格（マザルターク）山脈付近の砂丘

図8の左図は1975年10月4日のLandsat MSS，右図 は1992年12月30日の JERS－1 OPS 画像で，麻扎塔格山脈（口絵写真 1 のA点の西方）付近の砂丘を示している。麻扎塔格山脈北側の山脈から遠い所では，強風時の卓越風向の北北東風に平行な縦列型砂丘であるが，山脈に近 づくにつれて砂丘の卓越方向は山脈に平行な東西方向に変わり，それに南北方向の砂丘の重畳が認められる。気流が山脈等の障害物にぶつかると進行性の波動と後退性 の波動が発生する。この場合の砂丘の形成にはこのよう な波動が関与しているものと思われる。衛星画像から推定される麻扎塔格山脈北側の砂丘の平均間隔は約1．16 kmである。

ここには示してないが，山脈の南方には北北東の卓越強風に平行な縦列型砂丘が見られる。なおタクリマカン沙漠北東部の大きな縦列砂丘の場合と同じように，ここ

でも衛星画像の空間分解能の範囲では17年間に砂丘の位置や形に大きな変化は認められない。麻扎塔格山脈の南方のオアシス地帯への北方からの大量の砂輸送のあるこ とは事実で（長島ほか，1994，1995），著者自身も現地調査中に砂嵐に遭遇し，砂輸送の物凄さを体験した。砂丘 を形成している砂は強風で吹き飛ばされるがまたその補給もあり，長期的には砂輸送に関して連続の条件が満足 されているためであろう．

7．合成開ロレーダ（SAR）データ

図 9 はJERS－1 搭載合成開口レーダによる和田オア シスの画像である．河川，道路，農地，急峻な地形等は明膫に写っているが，光学センサによる観測画像には明暸に写っている小砂丘はSAR画像では写っていない。和田オアシスの東方のケリヤ河（口絵写真 1 のC地点）流域のSAR画像であケリヤ河東側の縦列大砂丘は写っ ているが，西側の小砂丘は写っていない。合成開口レー ダは，レーダからの電波の対象物による反射をとらえる あので，反射電波の強度は対象物の地形や誘電率等に依存し，光学センサとは異なる情報が得られる。アメリカ のSeasat衛星搭載SARではサハラ沙漠の地下の旧河道 の発見の例がある。JERS－1 SARデータでタクリマカ ン沙漠の地下情報についてはこれまでのところでは興味 ある結果は得られていない。データ処理法の開発によっ ては可能性がでてくるものと期待される．

図 9．JERS－1 の SAR 画像．钼測：1993年12月7日。

8．ま と め

以上の解析結果をまとめると次のようになる．（1）夕 クリマカン沙漠オアシス内の農地はは大きな矩形に区画 され，防砂用のポプラ並木で囲われているので識別が容易で面積の推定も容易である。（2）タリム河下流域の流量は 20 年前と比較して減少している。北東部にある $31 ~$ 35 農団付近にある眝水池，湖沼等の水量も同様である。
（3）タクリマカン沙漠北東部からケリヤ河中流域にかけ て特に発達した維列型砂丘がある。平均間隔は 1.5 km ぐ らいで，特に広い所では 2.7 km ぐらいである。（4）砂丘形成に対する顕著な地形の影響が麻扎塔格山脈付近で見 られる．もしこの山脈が無ければこの地方の卓越強風方向の北北東の風に沿った縦列型砂丘が形成されていたの もと思われる．（5）砂嵐時にはかなりの砂輸送があり，瞬間的には砂丘の変形等があることと思われるが，20年前の衛星画像と最近の衛星画像の比較では，衛星画像で識別が容易な大きな砂丘の形状等の変化はほとんどど認 められない。これは瞬間的には砂量の集束，発散があっ

ても長期的にはバランスが保たれ，砂輸送に関する連続 の条件が成り立っていること，砂丘の発達には限界があ り，ある大きさに達すると成長が止まり steady state の状態に到達して衛星画像では変化の識別が困難になる ためであろう。（6）JERS－1 合成開ロレーダデータでは大砂丘，農地，河川，道路，急峻な地形等の識別は容易 であるが，小砂丘，地下情報等の抽出は困難である。

謝 辞

この研究は科学技術振興調整費による「砂漠化機構の解明に関 する国際共同研究」の一環として実施したものである。また JERS－1 のデータは，宇宙開発事業団•通産省の JERS－1 検証研究で無儤提供されたちのである。この誌上を借りて関係者各位に深甚なる謝意を表します。最後に本論文に貴重な助言，適切なコメントを寄せて頂いた査読者に心からのお礼を申し上げ ます。

引用 文 献

遠藤邦彦•相馬秀広•渡辺満久•小杉正人•印牧もとこ・藤川格司•中山裕則•江口誠一•浜田誠一（1994）：砂漠域，湖沼堆積物の解析．科学技術庁研究開発局「砂漠化機構の解明に関する国際共同研究」平成5年度成果報告集：25－63．

石山 隆•土虽 洔•杉原洌彦•到 培君（1994）：タクラマ カン砂莫の地表状㤎の晭査．「地学維誌」103：334－351．
長島秀桔•内田 修（1991）：SPOT画像による砂寞地形の3次元解析．「沙莫研究」 1：53－59．
砂の粒度分布．科学技術庁研究開発局「砂漠化機嫩の解明に関する国際共同研究」平成 5 年度成果報告啠：164－173．
砂の粒度分布．科学技術庁研究開発局「砂淀化橁報の解明に関する国際共同研究」平成 6 年度成果報告亘：149－162．
小黒甽成•土屋 消（1995a）：タクラマカン砂漠における砂丘移動について，「日本リモートセンシング学会第18回学術講演詥文集」：157－158．
小黒朔成•土屋 消（1995b）：人工街星SPOTデータによるタク ラマカン砂漠の地表面状態の把掲。「日本砂漠学会醇演要旨集」6：41－42．
杉原泣彦（1991）：土地利用形县の調査．科学技術庁研究開発局「少漠化機符の解明に関する国淂共同研究」平成 2 年度成果報告安：90－101．
杉原㭚彦•石山 隆（1994）：土地利用形嵅の調查．科学技術庁「砂谟化樓梅の解明に関する国際共同研究報告草」：98－112．
杉原砤彦，石山 隆（1995）：土地利用形乮の倜査．科学技術庁研究開発局「砂淡化機摘の解明に関する国際共同研究」平成 6年度成果報告等：94－101．
土屋 清（1992）：タクラマカン砂莫の地表状態の調榃．科学技術庁研究開発局「破漠化機樀の解明に関する国際共同研究」平成 3 年度成果報告要：85－111．

土虹 清•石山 隆（1991）：タクラマカン砂漠の地表状恳の調植．科学技術庁研究開発局「秒漠化機䃓の解明に関する国䧆共同研究」平成 2 年度成果報告書：73－89．
吉野正敏（1991）：新诎の砂洪地の風と雨．「砂资研究」1：1－15．
孙 司衡•割 培君（1991）：「再生资願遥感研究」中国林葉出版社，374p．
科学技術出版社， 255 p ．

EsCADAFAL，R．（1993）：Remote sensing of soil color：Princi－ ples and applications．Remote Sensing Rev．，7：261－279．
Fujikawa，K．and Nakayama，Y．（1994）：A study on geomorphological classification along Hotan River in the Taklimakan Desert by the satellite images and field sur－ veys．Japan China Int Symp．on the Study of the Mechanism of Desertification（JCISSDM）：51－60．
Hill，J．，Megier，J．and Mehl，W．（1995）：Land degradation， soil erosion and desertification monitoring in Mediterra－ nean ecosystems．Remote Sensing Rev．，12：107－130．
Mougenot，B．and Pouget，M．（1993）：Remote sensing of salt affected soils．Remote Sensing Rev．，7：223－232．
Tsuchiya，K．and Fujita，T．（1968）：A satellite meteoro－ logical study of evaporation and cloud formation over the western Pacific under the influence of winter monsoon．J ． Meteor．Soc．Japan，Ser．II，45：232－250．
ZHU，S．，LiU，S．，WU，Z．and DI，X．（1986）：Desert in China．Inst． of Desert Research，Academia Sinica，Lanzhou：45－66．

付表1．高分解能観刑センサ搭战衛星とセンサ仕様。

	Landsat（米）		SPOT（仏）	MOS－1（日）	JERS－1（日）
センサ	MSS	TM	HRV	MESSR	OPS
	0．5－0．6	0．45－0．52	0．50－0．59	0．51－0．59	0．52－0．60
観	0．6－0．7	0．52－0．60	0．61－0．68	0．61－0．69	0．63－0．69
測	0．7－0．8	0．63－0．69	0．79－0．89	0．72－0．80	0．76－0．86 ${ }^{\text {－}}$
波	0．8－1．1	0．76－0．90		0．80－1．1	1．60－1．71
長		1．55－1．75	0．51－0．73		2．01－2．12
$\mu \mathrm{m}$		10．4－12．5	パンクロモード		2．13－2．25
		2．08－2．35			2．29－2．42
分解能 （m）	$\begin{aligned} & 79(1-3 \text { 号 } \\ & 81(4-5 \text { 号) } \end{aligned}$	30 黙赤外は120	$\begin{gathered} 20 \\ \text { バンクロモードでは } \\ 10 \mathrm{~m} \end{gathered}$	50	18.3×24.2
$\begin{aligned} & \text { 钼測蝠 } \\ & (\mathrm{km}) \end{aligned}$	180		60 （2 個同時通用 117）	100（2 個同時 䢞用 200）	75
打上旦	1972．7．23	1982．7．16	1986．2．22	1987．2．19	1992．2．11
回焔	18日（1－3号），16日（4－5号）		26日	17日	44日

[^9]
[^0]: - Chief Editor of Special Issue, Department of Geography, Faculty of Letters, Rissho University.

[^1]: - Faculty of Policy Studies, Chuo University. 742-1, Higashinakano, Hachioji, Tokyo, 192-03 Japan.

[^2]: ＊愛知大学地理学研究室

[^3]: - Institute of Geography, Aichi University. Machihata-cho, Toyohashi, 441 Japan.
 - Japan International Research Center for Agricultural Sciences. Tsukuba, 305 Japan.
 -.. Xinjiang Institute of Biology, Pedology and Desert Research, Chinese Academy of Sciences. Urumqi, China.
 (Received October 6, 1995; Accepted January 12, 1996)

[^4]: - Faculty of Letters, Nara Women's University. Kita-uoyanishimati, Nara, 630 Japan.

[^5]: －Institute of Desert Research，Chinese Academy of Sciences．Lanzhou， 730000.
 Desertification Research Centre，National Environmental Protection Agency．Nanjing 210042，China．

[^6]: －中国科学院沙洗研究所．間州，730000．
 中国理泋保磼局荒漠化研究センター．南京， 210042

[^7]: －Institute of Desert Research，Chinese Academy of Sciences．Lanzhou， 730000.
 Desertification Research Centre，National Environmental Protection Agency．Nanjing 210042，China．

[^8]: －中国科学院沙漠研究所，閉州，730000．
 中国国家佦境保誰局党洪化研究センター，南京， 210042.

[^9]: Landsat TMは4号から．SPOTはボインタブル機梅によりステレオ観湖可。
 JERS－1の＊的のバンドは 2 個あり 1 個はステレオ钼測用で前方視。JERS－1には合成開ロレータ（SAR）もあり，観則周波数 1,265 MHz ，分解能 18 m ，雲があっても観別可。

